Advertisement

Structural Characterization, Optical Absorption and Electrical Conduction in Ordered Defect Compound Cu3In5Se9 of the Ternary Cu-In-Se Semiconductor System

  • G. Marín
  • D. P. Singh
  • C. RincónEmail author
  • S. M. Wasim
  • G. E. Delgado
  • J. Enríquez
  • L. Essaleh
Article
  • 6 Downloads

Abstract

The optical absorption coefficient α and electrical conduction as a function of temperature of the semiconductor Cu3In5Se9, an ordered defect compound which crystallizes in a tetragonal structure with space group P\( \bar{4} \)2c, have been studied. The band gap energy EG varies between 0.994 eV and 0.983 eV in the temperature range between 25 and 300 K. The exponential variation of α with photon energy, observed just below the fundamental absorption edge, confirms the existence in Cu3In5Se9 of the Urbach’s tail. The phonon energy p associated with this tail is 101 meV. This is about three times higher than the highest optical phonon mode reported for Cu3In5Se9 from infrared reflectivity spectra. The origin of this high energy is attributed due to the contribution of localized modes produced by structural disorders due to deviation from ideal stoichiometry and donor–acceptor defects pairs. From the analysis of electrical data of n-type Cu3In5Se9 in the temperature range from 80 K to 300 K, it was found that above 100 K the electrical conduction is due to the activation of two shallow donor levels of about 40 meV and 80 meV, probably due to selenium vacancies.

Keywords

Ordered defect semiconductors band-to-band transition Urbach’s tails electrical conduction crystal structure characterization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    L.S. Palatnik and E.I. Rogacheva, Dokl. Akad. Nauk SSSR 174, 80 (1967).Google Scholar
  2. 2.
    U.C. Boenke and G. Kühn, J. Mater. Sci. 22, 1635 (1987).CrossRefGoogle Scholar
  3. 3.
    S.B. Zhang, S.H. Wei, A. Zunger, and H.K. Yoshida, Phys. Rev. B 57, 9642 (1998).CrossRefGoogle Scholar
  4. 4.
    C. Rincón, S.M. Wasim, and G. Marín, Appl. Phys. Lett. 80, 998 (2002).CrossRefGoogle Scholar
  5. 5.
    Y. Ando, I. Khatri, H. Matsumori, M. Sugiyama, and T. Nakada, Phys. Status Solidi A 216, 1900164 (2019).CrossRefGoogle Scholar
  6. 6.
    J.M. Raguse, C.P. Muzzillo, J.R. Sites, and L. Mansfield, IEEE J. Photovolt. 7, 303 (2016).CrossRefGoogle Scholar
  7. 7.
    M.D. Heinemann, R. Mainz, F. Österle, H. Rodriguez-Alvarez, D. Greiner, C.A. Kaufmann, and T. Unold, Sci. Rep. (Nat.) 7, 45463 (2017).CrossRefGoogle Scholar
  8. 8.
    S. Menezes and A. Samantilleke, Sci. Rep. (Nat.) 8, 11350 (2018).CrossRefGoogle Scholar
  9. 9.
    M.A. Green, Y. Hishikawa, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, and A.W.Y. Ho-Baillie, Progr. Photovolt. Res. Appl. 26, 427 (2018).CrossRefGoogle Scholar
  10. 10.
    T. Kato, J.-L. Wu, Y. Hirai, H. Sugimoto, and V. Bermudez, IEEE J. Photovolt. (2019).  https://doi.org/10.1109/JPHOTOV.2018.2882206.CrossRefGoogle Scholar
  11. 11.
    J. Yao, N.J. Takas, M.L. Schliefert, D.S. Paprocki, P.E.R. Blanchard, H. Gou, A. Mar, C.L. Exstrom, S.A. Darveau, P.F.P. Poudeu, and J.A. Aitken, Phys. Rev. B 84, 075203 (2011).CrossRefGoogle Scholar
  12. 12.
    D. Schmid, M. Ruckh, F. Grunwald, and H.W. Schock, J. Appl. Phys. 73, 2902 (1993).CrossRefGoogle Scholar
  13. 13.
    C. Rincón, S.M. Wasim, G. Marín, J.M. Delgado, and J. Contreras, Appl. Phys. Lett. 83, 1328 (2003).CrossRefGoogle Scholar
  14. 14.
    H.P. Wang, W. Lam, and I. Shih, J. Cryst. Growth 200, 137 (1999).CrossRefGoogle Scholar
  15. 15.
    N.S. Orlova, I.V. Bodnar, T.L. Kushner, and E.A. Kudritskaya, Cryst. Res. Technol. 37, 540 (2002).CrossRefGoogle Scholar
  16. 16.
    M. León, S. Levcenko, N.N. Syrbu, A. Nateprov, V. Tezlevan, J.M. Merino, and E. Arushanov, Phys. Status Solidi A 203, 2904 (2006).CrossRefGoogle Scholar
  17. 17.
    M. Parlak, C. Ercelebi, I. Gunai, H. Ozkan, N.M. Gasanly, and A. Culfaz, Cryst. Res. Technol. 32, 395 (1997).CrossRefGoogle Scholar
  18. 18.
    S.M. Wasim, C. Rincón, and G. Marín, Phys. Status Solidi A 194, 244 (2002).CrossRefGoogle Scholar
  19. 19.
    E. Guedez, C. Rincón, S.M. Wasim, G.E. Delgado, G. Marcano, and G. Sánchez-Pérez, Phys. Status Solidi B 254, 1700087 (2017).CrossRefGoogle Scholar
  20. 20.
    C. Rincón, S.M. Wasim, and G. Marín, J. Phys.: Condens. Matter 14, 997 (2002).Google Scholar
  21. 21.
    S.M. Wasim, C. Rincón, G. Marín, and J.M. Delgado, Appl. Phys. Lett. 77, 94 (2000).CrossRefGoogle Scholar
  22. 22.
    S. Mahanty, J.M. Merino, R. Díaz, F. Rueda, J.L. Martín de Vidales, and M. Léon, Inst. Phys. Conf. Ser. 152, 499 (1998).Google Scholar
  23. 23.
    R. Bacewicz, J. Filipowzic, and A. Wolska, Inst. Phys. Conf. Ser. 152, 507 (1998).Google Scholar
  24. 24.
    V.I. Tagirov, A.G. Gakhramanov, A.G. Guseinov, and F.M. Aliev, Sov. Phys. Semicond. 14, 831 (1980).Google Scholar
  25. 25.
    N.M. Gasanly, A.G. Guseinov, E.A. Aslanov, and S.A. El-Hamid, Phys. Status Solidi B 158, K85 (1990).CrossRefGoogle Scholar
  26. 26.
    N.M. Gasanly, Optik 143, 19 (2017).CrossRefGoogle Scholar
  27. 27.
    V.I. Tagirov, A.G. Gakhramanov, A.G. Guseinov, F.M. Aliev, and G.G. Guseinov, Sov. Phys. Crystallogr. 25, 237 (1980).Google Scholar
  28. 28.
    S.M. Wasim, C. Rincón, G. Marín, P. Bocaranda, E. Hernández, I. Bonalde, and E. Medina, Phys. Rev. B 64, 19501 (2001).CrossRefGoogle Scholar
  29. 29.
    C. Rincón, S.M. Wasim, G. Marín, R. Márquez, L. Nieves, G. Sánchez-Pérez, and E. Medina, J. Appl. Phys. 90, 4423 (2001).CrossRefGoogle Scholar
  30. 30.
    A. Boultif and D. Löuer, J. Appl. Cryst. 37, 724 (2004).CrossRefGoogle Scholar
  31. 31.
    J. Parkes, R.D. Tomlinson, and M.J. Hampshire, J. Appl. Cryst. 6, 414 (1973).CrossRefGoogle Scholar
  32. 32.
    S.M. Wasim, C. Rincón, G. Marín, J.M. Delgado, and J. Contreras, J. Phys. D Appl. Phys. 37, 479 (2004).CrossRefGoogle Scholar
  33. 33.
    G.E. Delgado, C. Rincón, and G. Marroquín, Rev. Mex. Fis. 65, 360 (2019).CrossRefGoogle Scholar
  34. 34.
    G.E. Delgado, L. Manfredy, and S.A. López-Rivera, Powder Diffr. 33, 237 (2018).CrossRefGoogle Scholar
  35. 35.
    Y.P. Varshni, Physica 34, 149 (1967).CrossRefGoogle Scholar
  36. 36.
    L. Viña, S. Logothetidis, and M. Cardona, Phys. Rev. B 30, 1979 (1984).CrossRefGoogle Scholar
  37. 37.
    I.A. Vaĭnshteĭn, A.F. Zatsepin, and V.S. Kortov, Phys. Solid State 41, 905 (1999).CrossRefGoogle Scholar
  38. 38.
    J.B. Cáceres and C. Rincón, Phys. Status Solidi B 234, 541 (2002).CrossRefGoogle Scholar
  39. 39.
    M.V. Kurik, Phys. Status Solidi A 8, 9 (1971).CrossRefGoogle Scholar
  40. 40.
    T. Shioda, S. Chichibu, T. Irie, and H. Nakanishi, J. Appl. Phys. 80, 1106 (1996).CrossRefGoogle Scholar
  41. 41.
    S.M. Wasim, G. Marín, C. Rincón, and G. Sánchez Pérez, J. Appl. Phys. 84, 5823 (1998).CrossRefGoogle Scholar
  42. 42.
    C. Rincón, S.M. Wasim, G. Marín, J.M. Delgado, J.R. Huntzinger, A. Zwick, and J. Galibert, Appl. Phys. Lett. 73, 441 (1998).CrossRefGoogle Scholar
  43. 43.
    S.M. Wasim, G. Marín, C. Rincón, P. Bocaranda, and G. Sánchez Pérez, J. Phys. Chem. Solids 61, 669 (2000).CrossRefGoogle Scholar
  44. 44.
    I. Bonalde, E. Medina, and S.M. Wasim, J. Phys. Chem. Solids 66, 1865 (2005).CrossRefGoogle Scholar
  45. 45.
    K.S. Seeger, Semiconductor Physics (Wien: Springer, 1973), pp. 35–50.CrossRefGoogle Scholar
  46. 46.
    H. Weinert, H. Neumann, H.J. Höbler, G. Kühn, and N. Van Nam, Phys. Status Solidi B 81, K59 (1977).CrossRefGoogle Scholar
  47. 47.
    R. Márquez and C. Rincón, Sol. Energy Mater. Sol. Cells 71, 19 (2002).CrossRefGoogle Scholar
  48. 48.
    S.M. Wasim, Sol. Cells 16, 289 (1986).CrossRefGoogle Scholar
  49. 49.
    J. Monecke, W. Siegel, E. Ziegler, and G. Kühnel, Phys. Status Solidi B 103, 269 (1981).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Millennium Institute for Research in Optics (MIRO)ConcepciónChile
  2. 2.Department of Physics, Faculty of ScienceUniversity of Santiago ChileSantiagoChile
  3. 3.Centro de Estudios de Semiconductores, Facultad de CienciasUniversidad de Los AndesMéridaVenezuela
  4. 4.Laboratorio de Cristalografía, Departamento de Química, Facultad de CienciasUniversidad de Los AndesMéridaVenezuela
  5. 5.Laboratoire de Matière Condensée et Nanostructures, Département de Physique, Faculté des Sciences et TechniquesUniversité Cadi-AyyadMarrakechMorocco

Personalised recommendations