Structural Characterization, Optical Absorption and Electrical Conduction in Ordered Defect Compound Cu3In5Se9 of the Ternary Cu-In-Se Semiconductor System
- 6 Downloads
Abstract
The optical absorption coefficient α and electrical conduction as a function of temperature of the semiconductor Cu3In5Se9, an ordered defect compound which crystallizes in a tetragonal structure with space group P\( \bar{4} \)2c, have been studied. The band gap energy EG varies between 0.994 eV and 0.983 eV in the temperature range between 25 and 300 K. The exponential variation of α with photon energy, observed just below the fundamental absorption edge, confirms the existence in Cu3In5Se9 of the Urbach’s tail. The phonon energy hνp associated with this tail is 101 meV. This is about three times higher than the highest optical phonon mode reported for Cu3In5Se9 from infrared reflectivity spectra. The origin of this high energy is attributed due to the contribution of localized modes produced by structural disorders due to deviation from ideal stoichiometry and donor–acceptor defects pairs. From the analysis of electrical data of n-type Cu3In5Se9 in the temperature range from 80 K to 300 K, it was found that above 100 K the electrical conduction is due to the activation of two shallow donor levels of about 40 meV and 80 meV, probably due to selenium vacancies.
Keywords
Ordered defect semiconductors band-to-band transition Urbach’s tails electrical conduction crystal structure characterizationPreview
Unable to display preview. Download preview PDF.
Notes
References
- 1.L.S. Palatnik and E.I. Rogacheva, Dokl. Akad. Nauk SSSR 174, 80 (1967).Google Scholar
- 2.U.C. Boenke and G. Kühn, J. Mater. Sci. 22, 1635 (1987).CrossRefGoogle Scholar
- 3.S.B. Zhang, S.H. Wei, A. Zunger, and H.K. Yoshida, Phys. Rev. B 57, 9642 (1998).CrossRefGoogle Scholar
- 4.C. Rincón, S.M. Wasim, and G. Marín, Appl. Phys. Lett. 80, 998 (2002).CrossRefGoogle Scholar
- 5.Y. Ando, I. Khatri, H. Matsumori, M. Sugiyama, and T. Nakada, Phys. Status Solidi A 216, 1900164 (2019).CrossRefGoogle Scholar
- 6.J.M. Raguse, C.P. Muzzillo, J.R. Sites, and L. Mansfield, IEEE J. Photovolt. 7, 303 (2016).CrossRefGoogle Scholar
- 7.M.D. Heinemann, R. Mainz, F. Österle, H. Rodriguez-Alvarez, D. Greiner, C.A. Kaufmann, and T. Unold, Sci. Rep. (Nat.) 7, 45463 (2017).CrossRefGoogle Scholar
- 8.S. Menezes and A. Samantilleke, Sci. Rep. (Nat.) 8, 11350 (2018).CrossRefGoogle Scholar
- 9.M.A. Green, Y. Hishikawa, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, and A.W.Y. Ho-Baillie, Progr. Photovolt. Res. Appl. 26, 427 (2018).CrossRefGoogle Scholar
- 10.T. Kato, J.-L. Wu, Y. Hirai, H. Sugimoto, and V. Bermudez, IEEE J. Photovolt. (2019). https://doi.org/10.1109/JPHOTOV.2018.2882206.CrossRefGoogle Scholar
- 11.J. Yao, N.J. Takas, M.L. Schliefert, D.S. Paprocki, P.E.R. Blanchard, H. Gou, A. Mar, C.L. Exstrom, S.A. Darveau, P.F.P. Poudeu, and J.A. Aitken, Phys. Rev. B 84, 075203 (2011).CrossRefGoogle Scholar
- 12.D. Schmid, M. Ruckh, F. Grunwald, and H.W. Schock, J. Appl. Phys. 73, 2902 (1993).CrossRefGoogle Scholar
- 13.C. Rincón, S.M. Wasim, G. Marín, J.M. Delgado, and J. Contreras, Appl. Phys. Lett. 83, 1328 (2003).CrossRefGoogle Scholar
- 14.H.P. Wang, W. Lam, and I. Shih, J. Cryst. Growth 200, 137 (1999).CrossRefGoogle Scholar
- 15.N.S. Orlova, I.V. Bodnar, T.L. Kushner, and E.A. Kudritskaya, Cryst. Res. Technol. 37, 540 (2002).CrossRefGoogle Scholar
- 16.M. León, S. Levcenko, N.N. Syrbu, A. Nateprov, V. Tezlevan, J.M. Merino, and E. Arushanov, Phys. Status Solidi A 203, 2904 (2006).CrossRefGoogle Scholar
- 17.M. Parlak, C. Ercelebi, I. Gunai, H. Ozkan, N.M. Gasanly, and A. Culfaz, Cryst. Res. Technol. 32, 395 (1997).CrossRefGoogle Scholar
- 18.S.M. Wasim, C. Rincón, and G. Marín, Phys. Status Solidi A 194, 244 (2002).CrossRefGoogle Scholar
- 19.E. Guedez, C. Rincón, S.M. Wasim, G.E. Delgado, G. Marcano, and G. Sánchez-Pérez, Phys. Status Solidi B 254, 1700087 (2017).CrossRefGoogle Scholar
- 20.C. Rincón, S.M. Wasim, and G. Marín, J. Phys.: Condens. Matter 14, 997 (2002).Google Scholar
- 21.S.M. Wasim, C. Rincón, G. Marín, and J.M. Delgado, Appl. Phys. Lett. 77, 94 (2000).CrossRefGoogle Scholar
- 22.S. Mahanty, J.M. Merino, R. Díaz, F. Rueda, J.L. Martín de Vidales, and M. Léon, Inst. Phys. Conf. Ser. 152, 499 (1998).Google Scholar
- 23.R. Bacewicz, J. Filipowzic, and A. Wolska, Inst. Phys. Conf. Ser. 152, 507 (1998).Google Scholar
- 24.V.I. Tagirov, A.G. Gakhramanov, A.G. Guseinov, and F.M. Aliev, Sov. Phys. Semicond. 14, 831 (1980).Google Scholar
- 25.N.M. Gasanly, A.G. Guseinov, E.A. Aslanov, and S.A. El-Hamid, Phys. Status Solidi B 158, K85 (1990).CrossRefGoogle Scholar
- 26.N.M. Gasanly, Optik 143, 19 (2017).CrossRefGoogle Scholar
- 27.V.I. Tagirov, A.G. Gakhramanov, A.G. Guseinov, F.M. Aliev, and G.G. Guseinov, Sov. Phys. Crystallogr. 25, 237 (1980).Google Scholar
- 28.S.M. Wasim, C. Rincón, G. Marín, P. Bocaranda, E. Hernández, I. Bonalde, and E. Medina, Phys. Rev. B 64, 19501 (2001).CrossRefGoogle Scholar
- 29.C. Rincón, S.M. Wasim, G. Marín, R. Márquez, L. Nieves, G. Sánchez-Pérez, and E. Medina, J. Appl. Phys. 90, 4423 (2001).CrossRefGoogle Scholar
- 30.A. Boultif and D. Löuer, J. Appl. Cryst. 37, 724 (2004).CrossRefGoogle Scholar
- 31.J. Parkes, R.D. Tomlinson, and M.J. Hampshire, J. Appl. Cryst. 6, 414 (1973).CrossRefGoogle Scholar
- 32.S.M. Wasim, C. Rincón, G. Marín, J.M. Delgado, and J. Contreras, J. Phys. D Appl. Phys. 37, 479 (2004).CrossRefGoogle Scholar
- 33.G.E. Delgado, C. Rincón, and G. Marroquín, Rev. Mex. Fis. 65, 360 (2019).CrossRefGoogle Scholar
- 34.G.E. Delgado, L. Manfredy, and S.A. López-Rivera, Powder Diffr. 33, 237 (2018).CrossRefGoogle Scholar
- 35.Y.P. Varshni, Physica 34, 149 (1967).CrossRefGoogle Scholar
- 36.L. Viña, S. Logothetidis, and M. Cardona, Phys. Rev. B 30, 1979 (1984).CrossRefGoogle Scholar
- 37.I.A. Vaĭnshteĭn, A.F. Zatsepin, and V.S. Kortov, Phys. Solid State 41, 905 (1999).CrossRefGoogle Scholar
- 38.J.B. Cáceres and C. Rincón, Phys. Status Solidi B 234, 541 (2002).CrossRefGoogle Scholar
- 39.M.V. Kurik, Phys. Status Solidi A 8, 9 (1971).CrossRefGoogle Scholar
- 40.T. Shioda, S. Chichibu, T. Irie, and H. Nakanishi, J. Appl. Phys. 80, 1106 (1996).CrossRefGoogle Scholar
- 41.S.M. Wasim, G. Marín, C. Rincón, and G. Sánchez Pérez, J. Appl. Phys. 84, 5823 (1998).CrossRefGoogle Scholar
- 42.C. Rincón, S.M. Wasim, G. Marín, J.M. Delgado, J.R. Huntzinger, A. Zwick, and J. Galibert, Appl. Phys. Lett. 73, 441 (1998).CrossRefGoogle Scholar
- 43.S.M. Wasim, G. Marín, C. Rincón, P. Bocaranda, and G. Sánchez Pérez, J. Phys. Chem. Solids 61, 669 (2000).CrossRefGoogle Scholar
- 44.I. Bonalde, E. Medina, and S.M. Wasim, J. Phys. Chem. Solids 66, 1865 (2005).CrossRefGoogle Scholar
- 45.K.S. Seeger, Semiconductor Physics (Wien: Springer, 1973), pp. 35–50.CrossRefGoogle Scholar
- 46.H. Weinert, H. Neumann, H.J. Höbler, G. Kühn, and N. Van Nam, Phys. Status Solidi B 81, K59 (1977).CrossRefGoogle Scholar
- 47.R. Márquez and C. Rincón, Sol. Energy Mater. Sol. Cells 71, 19 (2002).CrossRefGoogle Scholar
- 48.S.M. Wasim, Sol. Cells 16, 289 (1986).CrossRefGoogle Scholar
- 49.J. Monecke, W. Siegel, E. Ziegler, and G. Kühnel, Phys. Status Solidi B 103, 269 (1981).CrossRefGoogle Scholar