First-Principles Modeling of Oxygen Adsorption on Ag-Doped LaMnO3 (001) Surface

  • A. U. Abuova
  • Yu. A. MastrikovEmail author
  • E. A. Kotomin
  • S. N. Piskunov
  • T. M. Inerbaev
  • A. T. Akilbekov


The density functional theory (DFT) method has been used to calculate oxygen adsorption on the Ag-doped MnO2- and LaO-terminated (001) LaMnO3 surfaces. The catalytic effect of Ag doping is revealed by comparison of the adsorption energies, electron charge redistribution, and interatomic distances for the doped and undoped surfaces. Adsorption of Ag on the MnO2-terminated surface increases the adsorption energy for both atomic and molecular oxygen. This increases the oxygen surface concentrations and could improve the cathode efficiency of fuel cells. The opposite effect takes place at the LaO-terminated surface. Due to the large adsorption energies, adsorbed oxygen atoms are immobile and the oxygen reduction reaction rate is controlled by the concentration and mobility of oxygen vacancies.


Solid oxide fuel cells LaMnO3 oxygen adsorption Ag catalyst ab initio calculations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study was partly financed by the State Education Development Agency of the Republic of Latvia via the Latvian State Scholarship (A.A.) and Latvia-Ukraine Project (Grant LV-UA/2018/2 to E.K.). The work of T.I. is performed under the state assignment of IGM SB RAS. Also, this research was partly supported by the Ministry of Education and Science of the Republic of Kazakhstan in the framework of the scientific and technology Program BR05236795 ‘‘Development of Hydrogen Energy Technologies in the Republic of Kazakhstan’’. The authors thank M. Sokolov for technical assistance and valuable suggestions.


  1. 1.
    M.M. Kuklja, E.A. Kotomin, R. Merkle, Yu Mastrikov, and J. Maier, Phys. Chem. Chem. Phys. 15, 5443 (2013).CrossRefGoogle Scholar
  2. 2.
    E.A. Kotomin, R. Merkle, Y. Mastrikov, M.M. Kulkja, and J. Maier, Computational approaches to energy materials, ed. A. Walsh, A.A. Sokol, and C.R.A. Catlow (New York: Wiley, 2013), Google Scholar
  3. 3.
    E.A. Ahmad, V. Tileli, D. Kramer, G. Mallia, K.A. Stoerzinger, Y. Shao-Horn, A.R. Kucernak, and N.M. Harrison, J. Phys. Chem. C 119, 16804 (2015).CrossRefGoogle Scholar
  4. 4.
    A.S. Farlenkov, M.V. Ananyev, V.A. Eremin, N.M. Porotnikova, and EKh Kurumchin, Fuel Cells 15, 131 (2015).CrossRefGoogle Scholar
  5. 5.
    N.M. Porotnikova, M.V. Ananev, and E.K. Kurumchin, Russ. J. Electrochem. 47, 1250 (2011).CrossRefGoogle Scholar
  6. 6.
    N.M. Porotnikova, M.V. Ananyev, V.A. Eremin, N.G. Molchanova, and E.K. Kurumchin, Russ. J. Electrochem. 52, 717 (2016).CrossRefGoogle Scholar
  7. 7.
    N.M. Porotnikova, V.A. Eremin, A.S. Farlenkov, EKh Kurumchin, E.A. Sherstobitova, D.I. Kochubey, and M.V. Ananyev, Catal. Lett. 148, 2839 (2018).CrossRefGoogle Scholar
  8. 8.
    H.J. Choi, M. Kim, K.C. Neoh, D.Y. Jang, H.J. Kim, J.M. Shin, G.-T. Kim, and J.H. Shim, Adv. Energy Mater. 7, 1601956 (2017).CrossRefGoogle Scholar
  9. 9.
    S.-A. Park, E.-K. Lee, H. Song, and Y.-T. Kim, Sci. Rep. 5, 13552 (2015).CrossRefGoogle Scholar
  10. 10.
    Y. Zhou, Z. Lü, P. Guo, Y. Tian, X. Huang, and W. Su, Appl. Surf. Sci. 258, 2602 (2012).CrossRefGoogle Scholar
  11. 11.
    Y. Zhou, Z. Lü, B. Wei, X. Zhu, X. Huang, W. Jiang, and W. Su, J. Power Sources 209, 158 (2012).CrossRefGoogle Scholar
  12. 12.
    A.U. Abuova, YuA Mastrikov, E.A. Kotomin, Y. Kawazoe, T.M. Inerbaev, and A.T. Akilbekov, Solid State Ionics 273, 46 (2015).CrossRefGoogle Scholar
  13. 13.
    Yu Mastrikov, R. Merkle, E.A. Kotomin, M.M. Kuklja, and J. Maier, J. Mater. Chem. A 6, 11929 (2018).CrossRefGoogle Scholar
  14. 14.
    G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
  15. 15.
    G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).CrossRefGoogle Scholar
  16. 16.
    G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).CrossRefGoogle Scholar
  17. 17.
    P.E. Blöchl, Phys. Rev. B 50, 17953 (1994).CrossRefGoogle Scholar
  18. 18.
    G. Kresse and J. Joubert, Phys. Rev. B 59, 1758 (1999).CrossRefGoogle Scholar
  19. 19.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  20. 20.
    Yu.A. Mastrikov, PhD thesis, University of Stuttgart, Germany (2008).Google Scholar
  21. 21.
    E.A. Kotomin, Yu Mastrikov, E. Heifets, and J. Maier, Phys. Chem. Chem. Phys. 10, 4644 (2008).CrossRefGoogle Scholar
  22. 22.
    H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar
  23. 23.
    M. Yu and D.R. Trinkle, J. Chem. Phys. 134, 064111 (2011).CrossRefGoogle Scholar
  24. 24.
    G. Pilania and R. Ramprasad, Surf. Sci. 604, 1889 (2010).CrossRefGoogle Scholar
  25. 25.
    S. Piskunov, T. Jacob, and E. Spohr, Phys. Rev. B 83, 073402 (2011).CrossRefGoogle Scholar
  26. 26.
    S. Piskunov, E. Heifets, T. Jacob, E.A. Kotomin, D. Ellis, and E. Spohr, Phys. Rev. B 78, 121406 (2008).CrossRefGoogle Scholar
  27. 27.
    Yu Mastrikov, R. Merkle, E. Heifets, E.A. Kotomin, and J. Maier, J. Phys. Chem. C 114, 3017 (2010).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.L.N. Gumilyov, Eurasian National UniversityAstanaKazakhstan
  2. 2.Institute of Solid State PhysicsUniversity of LatviaRigaLatvia
  3. 3.Sobolev Institute of Geology and Mineralogy SB RASNovosibirskRussia

Personalised recommendations