Advertisement

Enhanced Electrostrictive Properties and Thermal Stability in Zn-Modified 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 Ceramics

  • Jie GuoEmail author
  • Yujun FengEmail author
  • Hu Zhang
  • Shaobo Mi
Article
  • 1 Downloads

Abstract

A 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 (PMNT) relaxor ferroelectric ceramic is a good dielectric and electrostrictive actuator material. Nevertheless, important engineering problems of further enhancing its electrostrictive effect and increasing its thermal stability must be solved to promote its applications. In this work, the Zn-doped PMNT (PMNT/xZn2+) ceramics were prepared by the niobite precursor synthesis method. The transition of the PMNT/xZn2+ ceramics from relaxor ferroelectric to normal ferroelectric was realized, increasing the residual polarization (Pr), saturation polarization (Pm), the ferroelectric-paraelectric transition temperature at εmax (Tm) and electric field induced strain (S) from x = 0.0 (Pr = 5.3294 μC/cm2, Pm = 26.6690 μC/cm2, Tm = 45°C, S = 1.08‰) to x = 8.0 (Pr = 19.9005 μC/cm2, Pm = 30.3718 μC/cm2, Tm = 70°C, S = 1.42‰). In addition, the upper temperature limit of the materials with a large electrostrictive effect (greater than 1‰) was extended from 40°C to 80°C. The main reason for these improved properties is that the magnesium ions were replaced by the highly reactive zinc ions at the B-site of the ferroelectric perovskite structure during the sintering and formed a certain amount of component segregation that increased the size of the polar nanoregions/domains and improved the polarizability of the materials.

Keywords

Lead magnesium niobate-lead titanate electrostrictive properties temperature stabilization equivalent doping zinc ion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China–NSAF (Grant No. U1230116), the National 973 Project of China (Grant No. 2015CB654602) and ‘‘111’’ Project (B14040).

Supplementary material

11664_2019_7812_MOESM1_ESM.pdf (3.7 mb)
Supplementary material 1 (PDF 3823 kb)

References

  1. 1.
    G.H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999).CrossRefGoogle Scholar
  2. 2.
    M.J. Pan and C.A. Randall, IEEE Electr. Insul. Mag. 26, 44 (2010).CrossRefGoogle Scholar
  3. 3.
    L.F. Francis and D.A. Payne, J. Am. Ceram. Soc. 74, 3000 (1991).CrossRefGoogle Scholar
  4. 4.
    B. Dkhil, J.M. Kiat, G. Calvarin, G. Baldinozzi, S.B. Vakhrushev, and E. Suard, Phys. Rev. B 65, 24104 (2001).CrossRefGoogle Scholar
  5. 5.
    D.H. Lee and N.K. Kim, Ferroelectrics 248, 5 (2000).  https://doi.org/10.1080/00150190008223664.CrossRefGoogle Scholar
  6. 6.
    D.J. Voss, S.L. Swartz, and T.R. Shrout, Ferroelectrics 50, 203 (1983).CrossRefGoogle Scholar
  7. 7.
    A.C. Caballero, J.F. Fernández, C. Moure, P. Durán, and Y.M. Chiang, J. Am. Ceram. Soc. 81, 939 (1998).CrossRefGoogle Scholar
  8. 8.
    M. Promsawat, A. Watcharapasorn, S. Jiansirisomboon, and Z.G. Ye, J. Am. Ceram. Soc. 98, 848 (2015).CrossRefGoogle Scholar
  9. 9.
    X.L. Chao, J.J. Wang, C. Kang, M.Y. Dong, and Z.P. Yang, J. Electron. Mater. 44, 3415 (2015).CrossRefGoogle Scholar
  10. 10.
    T. Mahapatra, S. Halder, S. Bhuyan, and R.N.P. Choudhary, J. Electron. Mater. (2018).  https://doi.org/10.1007/s11664-018-6583-0.CrossRefGoogle Scholar
  11. 11.
    I.Y. Kang, I.T. Seo, Y.J. Cha, J.H. Choi, S. Nahm, T.H. Sung, and J.H. Paik, J. Eur. Ceram. Soc. 32, 2381 (2012).CrossRefGoogle Scholar
  12. 12.
    S.E.E. Park and W. Hackenberger, Curr. Opin. Solid State Mater. Sci. 6, 11 (2002).CrossRefGoogle Scholar
  13. 13.
    G.S. Xu, K. Chen, D.F. Yang, and J.B. Li, Appl. Phys. Lett. 90, 032901 (2007).CrossRefGoogle Scholar
  14. 14.
    Z.G. Ye, MRS Bull. 34, 277 (2009).CrossRefGoogle Scholar
  15. 15.
    S.J. Zhang and F. Li, J. Appl. Phys. 111, 031301 (2012).CrossRefGoogle Scholar
  16. 16.
    S.L. Swartz and T.R. Shrout, Mater. Res. Bull. 17, 1245 (1982).CrossRefGoogle Scholar
  17. 17.
    R.D. Shannon, J. Appl. Phys. 73, 348 (1993).CrossRefGoogle Scholar
  18. 18.
    A.A. Bokov, Y.H. Bing, W. Chen, Z.G. Ye, S.A. Bogatina, I.P. Raevski, S.I. Raevskaya, and E.V. Sahkar, Phys. Rev. B 68, 052102 (2003).CrossRefGoogle Scholar
  19. 19.
    S. De Almeida-Didry, C. Autret, A. Lucas, C. Honstettre, F. Pacreau, and F. Gervais, J. Eur. Ceram. Soc. 34, 3649 (2014).CrossRefGoogle Scholar
  20. 20.
    P. Ravindranathan, S. Komarneni, A.S. Bhalla, and R. Roy, J. Am. Ceram. Soc. 74, 2996 (1991).CrossRefGoogle Scholar
  21. 21.
    R. Zuo, T. Granzow, D.C. Lupascu, and J. Rodel, J. Am. Ceram. Soc. 90, 1101 (2007).CrossRefGoogle Scholar
  22. 22.
    P. Augustine, M. Rath, and M.S.R. Rao, Ceram. Int. 43, 9408 (2017).CrossRefGoogle Scholar
  23. 23.
    M. Promsawat, A. Watcharapasorn, H.N. Tailor, S. Jiansirisomboon, and Z.G. Ye, J. Appl. Phys. 113, 204101 (2013).CrossRefGoogle Scholar
  24. 24.
    K. Okazaki and K. Nagata, J. Am. Ceram. Soc. 56, 82 (1973).CrossRefGoogle Scholar
  25. 25.
    B.M. Jin, J. Kim, and S.C. Kim, Appl. Phys. A Mater. Sci. Process. 65, 53 (1997).CrossRefGoogle Scholar
  26. 26.
    R. Cao, G. Li, J. Zeng, S. Zhao, L. Zheng, and Q. Yin, J. Am. Ceram. Soc. 93, 737 (2010).CrossRefGoogle Scholar
  27. 27.
    K. Uchino, S. Nomura, L.E. Cross, J. Jang, and R.E. Newhnam, J. Appl. Phys. 51, 1142 (1980).CrossRefGoogle Scholar
  28. 28.
    S.M. Pilgrim, M. Massuda, J.D. Prodey, and A.P. Ritter, J. Am. Ceram. Soc. 75, 1964 (1992).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, School of Electronic and Information EngineeringXi’an Jiaotong UniversityXi’anChina
  2. 2.State Key Laboratory for Mechanical Behavior of MaterialsXi’an Jiaotong UniversityXi’anChina

Personalised recommendations