Advertisement

Electrodeposition of Manganese-Nickel-Cobalt Sulfides on Reduced Graphene Oxide/Nickel Foam for High-Performance Asymmetric Supercapacitors

  • Uwamahoro Evariste
  • Guohua JiangEmail author
  • Bo Yu
  • Yongkun Liu
  • Pianpian MaEmail author
Article
  • 14 Downloads

Abstract

Ternary metal sulfides are potential and attractive materials for supercapacitors. Manganese-nickel-cobalt ternary sulfide (MNCS) nanosheets deposited on reduced graphene oxide/nickel foam (rGO/NF) have been synthesized via a simple electrochemical approach. The obtained ternary metal sulfide (MNCS@rGO/NF) showed better electrochemical performance than corresponding bimetal nickel-cobalt sulfides on reduced graphene oxide/nickel foam (NCS@rGO/NF), which can be attributed to the addition of manganese to increase the oxidation state in the electrodes. The MNCS@rGO/NF electrode material achieved a significant specific capacitance of 1302 F g−1 at 0.5 A g−1, with good rate performance and cyclic stability. In addition, asymmetric supercapacitor devices using the MNCS@rGO/NF and rGO/NF as positive and negative electrodes were fabricated, delivering high energy density of 103.62 Wh kg−1 at power density of 562.47 W kg−1 and 39.93 Wh kg−1 at power density of 1514.78 W kg−1.

Keywords

Ternary metal sulfides electrochemical asymmetric supercapacitor energy storage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was financially supported by the Collaborative Innovation Center for Modern Textile Technology of Zhejiang Province (2011-Program No. 20160202) and ‘‘521 Talents Training Plan’’ in Zhejiang Sci-Tech University.

Supplementary material

11664_2019_7810_MOESM1_ESM.pdf (369 kb)
Supplementary material 1 (PDF 368 kb)

References

  1. 1.
    S. Sahoo and C.S. Rout, Electrochim. Acta 220, 57 (2016).CrossRefGoogle Scholar
  2. 2.
    R. Xu, J. Lin, J. Wu, M. Huang, L. Fan, X. He, Y. Wang, and Z. Xu, Appl. Surf. Sci. 422, 597 (2017).CrossRefGoogle Scholar
  3. 3.
    H. Tong, W. Bai, S. Yue, S. Gao, L. Lu, L. Shen, S. Dong, J. Zhu, J. He, and X. Zhang, J. Mater. Chem. A 4, 11256 (2016).CrossRefGoogle Scholar
  4. 4.
    Y. Liu, G. Jiang, S. Sun, B. Xu, J. Zhou, Y. Zhang, and J. Yao, J. Alloys Compd. 731, 560 (2018).CrossRefGoogle Scholar
  5. 5.
    S. Hussain, T. Liu, M.S. Javed, N. Aslam, N. Shaheen, S. Zhao, W. Zeng, and J. Wang, Ceram. Int. 42, 11851 (2016).CrossRefGoogle Scholar
  6. 6.
    M. Yu, X. Li, Y. Ma, R. Liu, J. Liu, and S. Li, Appl. Surf. Sci. 396, 1816 (2017).CrossRefGoogle Scholar
  7. 7.
    L.G. Beka, X. Li, X. Xia, and W. Liu, Diam. Relat. Mater. 73, 169 (2017).CrossRefGoogle Scholar
  8. 8.
    Y. Meng, P. Sun, W. He, B. Teng, and X. Xu, Appl. Surf. Sci. 470, 792 (2019).CrossRefGoogle Scholar
  9. 9.
    R. Sahoo, P. Acharyya, N.K. Singh, A. Pal, Y. Negishi, and T. Pal, ACS Omega 2, 6576 (2017).CrossRefGoogle Scholar
  10. 10.
    X. Yu, J. Yu, L. Hou, A. Gagnoud, Y. Fautrelle, Z. Ren, and X. Li, J. Power Sources 408, 65 (2018).CrossRefGoogle Scholar
  11. 11.
    X. Hu, H. Nan, M. Liu, S. Liu, T. An, and H. Tian, Electrochim. Acta 306, 599 (2019).CrossRefGoogle Scholar
  12. 12.
    B. Yu, G. Jiang, W. Xu, C. Cao, Y. Liu, N. Lei, U. Evariste, and P. Ma, J. Alloys Compd. 799, 415 (2019).CrossRefGoogle Scholar
  13. 13.
    F. Wang, G. Li, Q. Zhou, J. Zheng, C. Yang, and Q. Wang, Appl. Surf. Sci. 425, 180 (2017).CrossRefGoogle Scholar
  14. 14.
    A.K. Mohammadi, S.E. Moosavifard, A.G. Tabrizi, M.M. Abdi, and G. Karimi, ACS Appl. Energy Mater. 2, 627 (2019).CrossRefGoogle Scholar
  15. 15.
    Z. Chai, Z. Wang, J. Wang, X. Li, and H. Guo, Ceram. Int. 44, 15778 (2018).CrossRefGoogle Scholar
  16. 16.
    Y. Liu, Q. Lu, Z. Huang, S. Sun, B. Yu, U. Evariste, G. Jiang, and J. Yao, J. Alloys Compd. 762, 301 (2018).CrossRefGoogle Scholar
  17. 17.
    J. Zhang, X. Liu, Q. Yin, Y. Zhao, J. Luo, and J. Han, ACS Omega 4, 11863 (2019).CrossRefGoogle Scholar
  18. 18.
    C. Cheng, X. Zhang, C. Wei, Y. Liu, C. Cui, Q. Zhang, and D. Zhang, Ceram. Int. 44, 17464 (2018).CrossRefGoogle Scholar
  19. 19.
    H. Li, Z. Li, M. Sun, Z. Wu, W. Shen, and Y. Fu, Electrochim. Acta 319, 716 (2019).CrossRefGoogle Scholar
  20. 20.
    X. Yuan, B. Tang, Y. Sui, S. Huang, J. Qi, Y. Pu, F. Wei, Y. He, Q. Meng, and P. Cao, J. Mater. Sci. Mater. Electron. 29, 8636 (2018).CrossRefGoogle Scholar
  21. 21.
    W. Xu, J. Lu, W. Huo, J. Li, X. Wang, C. Zhang, X. Gu, and C. Hu, Nanoscale 10, 14304 (2018).CrossRefGoogle Scholar
  22. 22.
    H. Jia, Y. Song, J. Wu, W. Fu, J. Zhao, and X. Liu, Mater. Lett. 233, 55 (2018).CrossRefGoogle Scholar
  23. 23.
    S. Liu and S.C. Jun, J. Power Sources 342, 629 (2017).CrossRefGoogle Scholar
  24. 24.
    S. Xu, C. Su, T. Wang, Y. Ma, J. Hu, J. Hu, N. Hu, Y. Su, Y. Zhang, and Z. Yang, Electrochim. Acta 259, 617 (2018).CrossRefGoogle Scholar
  25. 25.
    M. Wei, C. Wang, Y. Yao, S. Yu, W.-H. Liao, J. Rene, R. Sun, and C.-P. Wong, Chem. Eng. J. 355, 891 (2019).CrossRefGoogle Scholar
  26. 26.
    F. Wang, K. Zhou, J. Zheng, and J. Ma, Synth. Met. 256, 116113 (2019).Google Scholar
  27. 27.
    S. Sahoo, R. Mondal, D.J. Late, and C.S. Rout, Micropor. Mesopor. Mater. 244, 101 (2017).CrossRefGoogle Scholar
  28. 28.
    S. Rahimi, S. Shahrokhian, and H. Hosseini, J. Electroanal. Chem. 810, 78 (2018).CrossRefGoogle Scholar
  29. 29.
    G. Xiong, P. He, L. Liu, T. Chen, and T. S. Fisher, Front. Energy Res. 3, Article 39 (2015).Google Scholar
  30. 30.
    J. Zhao, C. Li, Q. Zhang, J. Zhang, X. Wang, J. Sun, J. Wang, J. Xie, Z. Lin, Z. Li, W. Lu, C. Lu, and Y. Yao, Nano Res. 11, 1775 (2018).CrossRefGoogle Scholar
  31. 31.
    S. Yang, C. Wu, J. Cai, Y. Zhu, H. Zhang, Y. Lu, and K. Zhang, J. Mater. Chem. A 5, 16776 (2017).CrossRefGoogle Scholar
  32. 32.
    X. Wang, Q. Zhang, J. Sun, Z. Zhou, Q. Li, B. He, J. Zhao, W. Lu, C. Wong, and Y. Yao, J. Mater. Chem. A 6, 8030 (2018).CrossRefGoogle Scholar
  33. 33.
    C. Wu, J. Cai, Y. Zhu, and K. Zhang, ACS Appl. Mater. Interfaces 22, 19114 (2017).CrossRefGoogle Scholar
  34. 34.
    S. Rafai, C. Qiao, M. Naveed, Z. Wang, W. Younas, S. Khalid, and C. Cao, Chem. Eng. J. 362, 576 (2019).CrossRefGoogle Scholar
  35. 35.
    A. Pramanik, S. Maiti, T. Dhawa, M. Sreemany, and S. Mahanty, Mater. Today Energy 9, 416 (2018).CrossRefGoogle Scholar
  36. 36.
    X. Han, H. Xuan, J. Gao, T. Liang, J. Yang, Y. Xu, P. Han, and Y. Du, Electrochim. Acta 288, 31 (2018).CrossRefGoogle Scholar
  37. 37.
    W. Li, Y. Bu, H. Jin, J. Wang, W. Zhang, S. Wang, and J. Wang, Energy Fuel 27, 6304 (2013).CrossRefGoogle Scholar
  38. 38.
    U. Evariste, G. Jiang, B. Yu, Y. Liu, Z. Huang, Q. Lu, and P. Ma, J. Mater. Res. 34, 2445 (2019).CrossRefGoogle Scholar
  39. 39.
    C. Wu, J. Cai, Q. Zhang, X. Zhou, Y. Zhu, P. Shen, and K. Zhang, ACS Appl. Mater. Interfaces 7, 26512 (2015).CrossRefGoogle Scholar
  40. 40.
    J. Qi, J. Mao, A. Zhang, L. Jiang, Y. Sui, Y. He, Q. Meng, F. Wei, and X. Zhang, J. Mater. Sci. 53, 16074 (2018).CrossRefGoogle Scholar
  41. 41.
    Y. Wang, M. Zhang, Y. Li, T. Ma, H. Liu, D. Pan, X. Wang, and A. Wang, Electrochim. Acta 290, 12 (2018).CrossRefGoogle Scholar
  42. 42.
    P. Sivakumar, M. Jana, M.G. Jung, A. Gedanken, and H.S. Park, J. Mater. Chem. A 7, 11362 (2019).CrossRefGoogle Scholar
  43. 43.
    P. Kulkarni, S.K. Nataraj, R.G. Balakrishna, D.H. Nagarajua, and M.V. Reddy, J. Mater. Chem. A 5, 22040 (2017).CrossRefGoogle Scholar
  44. 44.
    D. Sun, L. He, R. Chen, Z. Lin, S. Lin, C. Xiao, and B. Lin, J. Mater. Chem. A 6, 18987 (2018).CrossRefGoogle Scholar
  45. 45.
    D. Cai, D. Wang, C. Wang, B. Liu, L. Wang, Y. Liu, Q. Li, and T. Wang, Electrochim. Acta 151, 35 (2005).CrossRefGoogle Scholar
  46. 46.
    Y. Feng, W. Liu, L. Sun, Y. Zhu, Y. Chen, M. Meng, J. Li, J. Yang, Y. Zhang, and K. Liu, J. Alloys Compd. 753, 761 (2018).CrossRefGoogle Scholar
  47. 47.
    C. Zhang, X. Geng, S. Tang, M. Deng, and Y. Du, J. Mater. Chem. A 5, 5912 (2017).CrossRefGoogle Scholar
  48. 48.
    L. Lin, L. Li, S. Hussain, S. Zhao, L. Wu, X. Peng, and N. Hu, Appl. Surf. Sci. 452, 113 (2018).CrossRefGoogle Scholar
  49. 49.
    H. Wang, K. Zhang, Y. Song, J. Qiu, J. Wu, and L. Yan, Carbon 146, 420 (2019).CrossRefGoogle Scholar
  50. 50.
    J. Gao, H. Xuan, Y. Xu, T. Liang, X. Han, J. Yang, P. Han, D. Wang, and Y. Du, Electrochim. Acta 286, 92 (2018).CrossRefGoogle Scholar
  51. 51.
    Y. Huang, L. Quan, T. Liu, Q. Chen, D. Cai, and H. Zhan, Nanoscale 10, 14171 (2018).CrossRefGoogle Scholar
  52. 52.
    C. Zhang, X. Cai, Y. Qian, H. Jiang, L. Zhou, B. Li, L. Lai, Z. Shen, and W. Huang, Adv. Sci. 5, 1700375 (2017).CrossRefGoogle Scholar
  53. 53.
    Y. She, B. Tang, D. Li, X. Tang, J. Qiu, Z. Shang, and W. Hu, Coatings 8, 340 (2018).CrossRefGoogle Scholar
  54. 54.
    L.G. Beka, X. Li, and W. Liu, Sci. Rep. 7, 2105 (2017).CrossRefGoogle Scholar
  55. 55.
    X. Li, Q. Li, Y. Wu, M. Rui, and H. Zeng, ACS Appl. Mater. Interfaces 7, 19316 (2015).CrossRefGoogle Scholar
  56. 56.
    J. Jiang, Y. Sun, Y. Chen, X. Hu, L. Zhu, H. Chen, and S. Han, J. Mater. Sci. 54, 11936 (2019).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang)HangzhouPeople’s Republic of China
  2. 2.Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT)Ministry of EducationHangzhouPeople’s Republic of China
  3. 3.Institute of Smart Fiber MaterialsZhejiang Sci-Tech UniversityHangzhouPeople’s Republic of China
  4. 4.Department of Polymer EngineeringZhejiang Sci-Tech UniversityHangzhouPeople’s Republic of China

Personalised recommendations