Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Hybrid Graphene Titanium Nanocomposites and Their Applications in Energy Storage Devices: a Review

Abstract

Emissions of natural gas and carbon dioxide due to fossil fuels have become a global issue which influences the development of various technologies. Demand for clean renewable power sources is ever increasing. However, renewable sources are intermittent in nature, which poses a challenge in electricity generation and power load stability. Lately, supercapacitors have attracted remarkable interest in the field of electricity storage due to their ability to store large amounts of electric charge, enabling high power output. Reduced graphene oxide incorporated with titanium dioxide (rGO/TiO2) nanocomposites are well considered as potential supercapattery materials due to their superior mechanical properties, notable strength, and abundance in Nature. rGO carbon material acts as the ion reservoir, facilitating faster electron transfer mobility, whereas mesoporous TiO2 provides a larger surface area and more active sites, which improve the cycling stability and specific capacitance. Literature reports that supercapacitor performance mainly depends on the choice of the electroactive material, electrolyte, and current collector. This review focuses on recent developments in supercapacitor technology, storage mechanisms of different electrodes, a comprehensive discussion of different challenges related to energy storage devices, as well as the formation mechanism of rGO/TiO2 hybrid electrodes.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    M.B. Naik, P. Kumar, and S. Majhi, Int. J. Electr. Power 105, 365 (2019).

  2. 2.

    L. Guan, L. Yu, and G.Z. Chen, Electrochim. Acta 206, 464 (2016).

  3. 3.

    R.S. Kate, S.A. Khalate, and R.J. Deokate, J. Alloys Compd. 734, 89 (2018).

  4. 4.

    P. Salimi, O. Norouzi, S. Pourhoseini, P. Bartocci, A. Tavasoli, F.D. Maria, S.M. Pirbazari, G. Bidini, and F. Fantozzi, Renew. Energy 140, 704 (2019).

  5. 5.

    V. Augustyn, P. Simon, and B. Dunn, Energ Environ. Sci. 7, 1597 (2014).

  6. 6.

    Y. Wang, Y. Song, and Y. Xia, Chem. Soc. Rev. 45, 5925 (2016).

  7. 7.

    Z. Zhang, L. Wang, Y. Li, Y. Wang, J. Zhang, G. Guan, Z. Pan, G. Zheng, and H. Peng, Adv. Energy Mater. 7, 1601814 (2017).

  8. 8.

    S.P. Samanta, N.C. Murmu, and T. Kuila, J. Energy Storage 17, 181 (2018).

  9. 9.

    Z. Le, F. Liu, P. Nie, X. Li, X. Liu, Z. Bian, G. Chen, H.B. Wu, and Y. Lu, ACS Nano 11, 2952 (2017).

  10. 10.

    B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Berlin: Springer, 2013).

  11. 11.

    T. Brousse, D. Bélanger, and J.W. Long, J. Electrochem. Soc. 162, A5185 (2015).

  12. 12.

    J. Guo, Q. Liu, C. Wang, and M.R. Zachariah, Adv. Funct. Mater. 22, 803 (2012).

  13. 13.

    J. Chen, Y. Wang, J. Cao, Y. Liu, J.H. Ouyang, D. Jia, and Y. Zhou, Electrochim. Acta 182, 861 (2015).

  14. 14.

    Y. Cao, B. Lin, Y. Sun, H. Yang, and X. Zhang, Electrochim. Acta 178, 398 (2015).

  15. 15.

    V.C. Lokhande, A.C. Lokhande, C.D. Lokhande, J.H. Kim, and T. Ji, J. Alloys Compd. 682, 381 (2016).

  16. 16.

    F.S. Omar, A. Numan, N. Duraisamy, S. Bashir, K. Ramesh, and S. Ramesh, RSC Adv. 6, 76298 (2016).

  17. 17.

    S.G. Krishnan, M. Harilal, B. Pal, I.I. Misnon, C. Karuppiah, C.C. Yang, and R. Jose, J. Electroanal. Chem. 805, 126 (2017).

  18. 18.

    H. Wu, X. Wang, L. Jiang, C. Wu, Q. Zhao, X. Liu, and L. Yi, J. Power Sources 226, 202 (2013).

  19. 19.

    S. Lu, Y. Song, K. Guo, X. Chen, J. Xu, and L. Zhao, J. Electroanal. Chem. 818, 58 (2018).

  20. 20.

    C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, and J. Zhang, Chem. Soc. Rev. 44, 7484 (2015).

  21. 21.

    K. Xu, M.S. Ding, and T.R. Jow, J. Electrochem. Soc. 148, A267 (2001).

  22. 22.

    M. Galiński, A. Lewandowski, and I. Stępniak, Electrochim. Acta 51, 5567 (2006).

  23. 23.

    R. Heimböckel, S. Kraas, F. Hoffmann, and M. Fröba, Appl. Surf. Sci. 427, 1055 (2018).

  24. 24.

    M. Abdollahifar, S.S. Huang, Y.H. Lin, Y.C. Lin, B.Y. Shih, H.S. Sheu, Y.F. Liao, and N.L. Wu, J. Power Sources 378, 90 (2018).

  25. 25.

    B.C. Brodie, Ann. Chim. Phys. 59, e472 (1860).

  26. 26.

    L. Staudenmaier, Eur. J. Inorg. Chem. 31, 1481 (1898).

  27. 27.

    W.S. Hummers Jr and R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).

  28. 28.

    X. Mu, X. Liu, K. Zhang, J. Li, J. Zhou, E. Xie, and Z. Zhang, Electron. Mater. Lett. 12, 296 (2016).

  29. 29.

    L. Chen, Z. Xu, J. Li, C. Min, L. Liu, X. Song, G. Chen, and X. Meng, Mater. Lett. 65, 1229 (2011).

  30. 30.

    H.J. Shin, K.K. Kim, A. Benayad, S.M. Yoon, H.K. Park, I.S. Jung, M.H. Jin, H.K. Jeong, J.M. Kim, and J.Y. Choi, Adv. Funct. Mater. 19, 1987 (2009).

  31. 31.

    T.H.T. Vu, T.T.T. Tran, H.N.T. Le, P.H.T. Nguyen, N.Q. Bui, and N. Essayem, Bull. Mater. Sci. 38, 667 (2015).

  32. 32.

    W. Bao, F. Miao, Z. Chen, H. Zhang, W. Jang, C. Dames, and C.N. Lau, Nat. Nanotechnol. 4, 562 (2009).

  33. 33.

    M. Ghorbani, H. Abdizadeh, and M.R. Golobostanfard, Proc. Mater. Sci. 11, 326 (2015).

  34. 34.

    S. Rasul, A. Alazmi, K. Jaouen, M.N. Hedhili, and P. Costa, Carbon 111, 774 (2017).

  35. 35.

    N. Sykam and G.M. Rao, Mater. Lett. 204, 169 (2017).

  36. 36.

    A.M.N. Suárez, K.L.V. Aken, T. Mathis, T. Makaryan, J. Yan, J.C. González, T. Rojo, and Y. Gogotsi, Electrochim. Acta 259, 752 (2018).

  37. 37.

    H. Jung, H. Wang, and T. Hu, J. Power Sources 267, 566 (2014).

  38. 38.

    Y. Tang, D. Wu, S. Chen, F. Zhang, J. Jia, and X. Feng, Energy Environ. Sci. 6, 2447 (2013).

  39. 39.

    B. Pal, B.L. Vijayan, S.G. Krishnan, M. Harilal, W.J. Basirun, A. Lowe, M.M. Yusoff, and R. Jose, J. Alloys Compd. 740, 703 (2018).

  40. 40.

    L. Zhao, T. Tang, W. Chen, X. Feng, and L. Mi, Green Energy Environ. 3, 277 (2018).

  41. 41.

    Y. Zhang, C.W. Foster, C.E. Banks, L. Shao, H. Hou, G. Zou, J. Chen, Z. Huang, and X. Ji, Adv. Mater. 28, 9391 (2016).

  42. 42.

    L.L. Jiang, X. Lu, C.M. Xie, G.J. Wan, H.P. Zhang, and T. Youhong, J. Phys. Chem. C 119, 3903 (2015).

  43. 43.

    P. Agharezaei, H. Abdizadeh, and M.R. Golobostanfard, Ceram. Int. 44, 4132 (2018).

  44. 44.

    K. Huang, C. Yan, K. Wang, Y. Zhang, and Z. Ju, J. Alloys Compd. 687, 683 (2016).

  45. 45.

    J.M. Feng, L. Dong, Y. Han, X.F. Li, and D.J. Li, Int. J. Hydrog. Energy 41, 355 (2016).

  46. 46.

    J.H. Kim, W. Choi, H.G. Jung, S.H. Oh, K.Y. Chung, W. Cho, I.H. Oh, and I.W. Nah, J. Alloys Compd. 690, 390 (2017).

  47. 47.

    J. Li, J. Huang, J. Li, L. Cao, H. Qi, Y. Cheng, Q. Xi, and H. Dang, J. Alloys Compd. 727, 998 (2017).

  48. 48.

    D. Yoon, J. Hwang, D.H. Kim, W. Chang, K.Y. Chung, and J. Kim, J. Supercrit. Fluid. 125, 66 (2017).

  49. 49.

    Z. Chen, Y. Gao, Q. Zhang, L. Li, P. Ma, B. Xing, J. Cao, G. Sun, H. Bala, and C. Zhang, J. Alloys Compd. 774, 873 (2019).

  50. 50.

    H. Xiao, W. Guo, B. Sun, M. Pei, and G. Zhou, Electrochim. Acta 190, 104 (2016).

  51. 51.

    V.H. Pham, T.D.N. Phan, X. Tong, B. Rajagopalan, J.S. Chung, and J.H. Dickerson, Carbon 126, 135 (2018).

  52. 52.

    D. Luo, Y. Li, J. Liu, H. Feng, D. Qian, S. Peng, J. Jiang, and Y. Liu, J. Alloys Compd. 581, 303 (2013).

  53. 53.

    V. Sharavath, S. Sarkar, and S. Ghosh, J. Electroanal. Chem. 829, 208 (2018).

  54. 54.

    Y.C. Chang, C.Y. Lee, and H.T. Chiu, ACS Appl. Mater. Int. 6, 31 (2013).

  55. 55.

    H. Dong, A. Wang, and G.M. Koenig, Powder Technol. 335, 137 (2018).

  56. 56.

    A. Kruse and N. Dahmen, J. Supercrit. Fluid. 134, 114 (2018).

Download references

Acknowledgments

This work was financially supported by University Malaya Research Grant No. RP045B-17AET, Impact-Oriented Interdisciplinary Research Grant No. IIRG018A-2019, Global Collaborative Programme - SATU Joint Research Scheme (No. ST012-2019), and BOLD2025 Grant No. 10436494/B/2019097 under Universiti Tenaga Nasional Sdn. Bhd.

Author information

Correspondence to Chin Wei Lai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Heng, I., Low, F.W., Lai, C.W. et al. Hybrid Graphene Titanium Nanocomposites and Their Applications in Energy Storage Devices: a Review. Journal of Elec Materi 49, 1777–1786 (2020). https://doi.org/10.1007/s11664-019-07791-6

Download citation

Keywords

  • rGO
  • rGO/TiO2 nanocomposites
  • supercapacitor
  • supercapattery
  • electrolyte