Synthesis and Characterization of LiCrO2 Thin Films As Potential Cathode Material for Lithium Ion Batteries

  • H. I. ElsaeedyEmail author


Production of effective and inexpensive new material used as a cathode for lithium ion batteries is the main topic of this study. Thin films of lithium chromium oxide (LiCrO2) were grown onto a glass substrate by spray pyrolysis using a chemical solution containing lithium acetate Li (CH3COO)2 and chromium trioxide (Cr2O3) as precursors. The depositions occurred in the substrate temperature range of 350°C. The investigation of the x-ray diffraction of the LiCrO2 thin films was displayed to be polycrystalline with a rhombohedral structure. The linear optical parameters, represented in the refractive index, energy gap and absorption coefficient of the LiCrO2 thin films were estimated via the transmittance and reflectance measurements. In the linear optical studies, the evaluated direct energy gaps of the LiCrO2 thin films could be observed decreased by increasing the film thickness. The dispersion refractive index data of the LiCrO2 thin films were analyzed according to the single oscillator model to evaluate the dispersion parameters including the dispersion energy, the optical dielectric constant and the oscillator energy. The nonlinear optical constants of the LiCrO2 thin films were calculated.


Lithium chromium oxide spray pyrolysis technique x-ray diffraction dispersion parameters third-order nonlinear susceptibility 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    M.S. El-Bana, I.M. El Radaf, S.S. Fouad, and G.B. Sakr, J. Alloys Compd. 705, 333 (2017).CrossRefGoogle Scholar
  2. 2.
    K.-S. Han, S.-W. Song, S. Tsurimoto, H. Fujita, I. Sasagawa, K.-H. Choi, H.-K. Kang, and M. Yoshimura, Solid State Ionics 151, 11 (2002).CrossRefGoogle Scholar
  3. 3.
    M.M. Ahmad, RSC Adv. 5, 25824 (2015).CrossRefGoogle Scholar
  4. 4.
    J. Huang, J. Yang, W. Li, W. Cai, and Z. Jiang, Thin Solid Films 516, 3314 (2008).CrossRefGoogle Scholar
  5. 5.
    M. Yoshimura, K.-S. Han, and S. Tsurimoto, Solid State Ion. 106, 39 (1998).CrossRefGoogle Scholar
  6. 6.
    C.-J. Kim, I.-S. Ahn, K.-K. Cho, S.-G. Lee, and J.-K. Chung, J. Alloys Compd. 449, 335 (2008).CrossRefGoogle Scholar
  7. 7.
    P. Fragnaud and D.M. Schleich, Ionics (Kiel). 1, 183 (1995).CrossRefGoogle Scholar
  8. 8.
    M.Y. Song and R. Lee, J. Power Sour. 111, 97 (2002).CrossRefGoogle Scholar
  9. 9.
    X. Lai, D. Gao, J. Bi, Y. Li, P. Cheng, C. Xu, and D. Lin, J. Alloys Compd. 487, L30 (2009).CrossRefGoogle Scholar
  10. 10.
    F. Michalak, K. Von Rottkay, T. Richardson, J. Slack, and M. Rubin, Electrochim. Acta 44, 3085 (1999).CrossRefGoogle Scholar
  11. 11.
    X. Zheng, X. Li, Z. Wang, H. Guo, Z. Huang, G. Yan, and D. Wang, Electrochim. Acta 191, 832 (2016).CrossRefGoogle Scholar
  12. 12.
    T.A. Hameed, I.M. El Radaf, and H.E. Elsayed-Ali, J. Mater. Sci. Mater. Electron. 29, 12584 (2018).CrossRefGoogle Scholar
  13. 13.
    I.M. El Radaf, S.S. Fouad, A.M. Ismail, and G.B. Sakr, Mater. Res. Express 5, 46406 (2018).CrossRefGoogle Scholar
  14. 14.
    X. Wang, T. Liu, H. Guan, F. Yu, and H. Hou, Optoelectron. Adv. Mater. Commun. 9, 1190 (2015).Google Scholar
  15. 15.
    M.S. AlKhalifah, I.M. El Radaf, and M.S. El-Bana, J. Alloys Compd. 813, 152169 (2020).CrossRefGoogle Scholar
  16. 16.
    I.S. Yahia, I.M. El Radaf, A.M. Salem, and G.B. Sakr, J. Alloys Compd. 776, 1056 (2019).CrossRefGoogle Scholar
  17. 17.
    A.S. Hassanien and I. Sharma, J. Alloys Compd. 798, 750 (2019).CrossRefGoogle Scholar
  18. 18.
    K. Shen, C. Ou, T. Huang, H. Zhu, J. Li, Z. Li, and Y. Mai, Sol. Energy Mater. Sol. Cells 186, 58 (2018).CrossRefGoogle Scholar
  19. 19.
    M. Shkir, A. Khan, A.M. El-Toni, A. Aldalbahi, I.S. Yahia, and S. AlFaify, J. Phys. Chem. Solids 130, 189 (2019).CrossRefGoogle Scholar
  20. 20.
    T.A. Hameed, I.M. El Radaf, and G.B. Sakr, Appl. Phys. A 124, 684 (2018).CrossRefGoogle Scholar
  21. 21.
    T.A. Hameed, A.R. Wassel, and I.M. El Radaf, J. Alloys Compd. 805, 1 (2019).CrossRefGoogle Scholar
  22. 22.
    A.M. Mansour and I.M. El Radaf, Int. J. Microstruct. Mater. Prop. 14, 419 (2019).Google Scholar
  23. 23.
    I.M. El Radaf, T.A. Hameed, G.M. El Komy, and T.M. Dahy, Ceram. Int. 45, 3072 (2019).CrossRefGoogle Scholar
  24. 24.
    P. Sharma, M.S. El-Bana, S.S. Fouad, and V. Sharma, J. Alloys Compd. 667, 204 (2016).CrossRefGoogle Scholar
  25. 25.
    S.H. Wemple, Phys. Rev. B 7, 3767 (1973).CrossRefGoogle Scholar
  26. 26.
    S.H. Wemple and M. DiDomenico Jr, Phys. Rev. B 3, 1338 (1971).CrossRefGoogle Scholar
  27. 27.
    I.M. El Radaf and R.M. Abdelhameed, J. Alloys Compd. 765, 1174 (2018).CrossRefGoogle Scholar
  28. 28.
    V. Pawar, M. Kumar, P.K. Dubey, M.K. Singh, A.S.K. Sinha, and P. Singh, Appl. Phys. A 125, 10 (2019).CrossRefGoogle Scholar
  29. 29.
    A. El-Denglawey, M.M. Makhlouf, and M. Dongol, Results Phys. 10, 714 (2018).CrossRefGoogle Scholar
  30. 30.
    A. Saeed and I. Sharma, Opt. Int. J. Light Electron Opt. 200, 163415 (2020).CrossRefGoogle Scholar
  31. 31.
    R.R. Reddy, K.R. Gopal, K. Narasimhulu, L.S.S. Reddy, K.R. Kumar, C.V.K. Reddy, and S.N. Ahmed, Opt. Mater. (Amst). 31, 209 (2008).CrossRefGoogle Scholar
  32. 32.
    E.R. Shaaban, N. Afify, and A. El-Taher, J. Alloys Compd. 482, 400 (2009).CrossRefGoogle Scholar
  33. 33.
    E.R. Shaaban, M.N. Abdel Salam, M. Mohamed, M.A. Abdel-Rahim, and A.Y. Abdel-Latief, J. Mater. Sci. Mater. Electron. 28, 13379 (2017).CrossRefGoogle Scholar
  34. 34.
    S.S. Fouad, I.M. El Radaf, P. Sharma, and M.S. El-Bana, J. Alloys Compd. 757, 124 (2018).CrossRefGoogle Scholar
  35. 35.
    I.M. El Radaf, T.A. Hameed, and I.S. Yahia, Mater. Res. Express 5, 66416 (2018).CrossRefGoogle Scholar
  36. 36.
    S. Gedi, V.R.M. Reddy, C. Park, J. Chan-Wook, and K.T.R. Reddy, Opt. Mater. (Amst). 42, 468 (2015).CrossRefGoogle Scholar
  37. 37.
    A.A.A. Darwish, M. Rashad, A.E. Bekheet, and M.M. El-Nahass, J. Alloys Compd. 709, 640 (2017).CrossRefGoogle Scholar
  38. 38.
    R.M. Abdelhameed and I.M. El Radaf, Mater. Res. Express 5, 66402 (2018).CrossRefGoogle Scholar
  39. 39.
    S.R. Alharbi, A.A.A. Darwish, S.E. Al Garni, H.I. El Saeedy, and K.F.A. El-Rahman, Infrared Phys. Technol. 78, 77 (2016).CrossRefGoogle Scholar
  40. 40.
    V. Ganesh, L. Haritha, M. Anis, M. Shkir, I.S. Yahia, A. Singh, and S. AlFaify, Solid State Sci. 86, 98 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Advanced Functional Materials and Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia

Personalised recommendations