Preparation of Rice Husk-Based C/SiO2 Composites and Their Performance as Anode Materials in Lithium Ion Batteries
- 12 Downloads
Abstract
In this study, we used a carbonization method to prepare biomass-based C/SiO2 composites from rice husks for use in lithium ion batteries. Carbonization was carried out at different temperatures in an N2 atmosphere and a heating rate of 5 °C min−1, and the biomass-based C/SiO2 composites were obtained. The results showed that the lithium ion batteries maintained good cycling performance under a current density of 100 mA g−1. At the same time, they had a good performance rate at different current densities. According to thermogravimetric analysis, x-ray powder diffraction patterns, Fourier transform infrared spectroscopy, Raman spectroscopy and other data for the biomass-based C/SiO2 composites, 700°C was the optimal carbonization temperature. At this temperature, some of the carbon was carbonized, and the sp2 hybridized carbon in the surface functional group was weakened. Simultaneously, the connection of sp2 hybridized carbon in C=C greatly improved the properties of the materials. According to the Brunauer–Emmett–Teller results, the biomass-based C/SiO2 composites obtained by carbonization of rice husks had micropores, which provided active sites for insertion and extraction of Li+. This method is in line with the concept of environmental protection, as carbonization is a simple process, and rice husks are by-products of processing.
Keywords
Biomass-C/SiO2 composites lithium ion batteries rice husks carbonization temperaturePreview
Unable to display preview. Download preview PDF.
Notes
Acknowledgments
This work was supported by the Jilin Scientific and Technological Development Program, China (No. 20180101287JC), the National Key Research and Development Program of China (No. 2016YFF0201204) and the Graduate Innovation Fund of Jilin University.
References
- 1.Y.J. Li, X.F. Wang, Y.C. Zhu, L.L. Wang, and Z.C. Wang, Colloids. Surf. A. Physicochem. Eng. Asp. 395, 157 (2012).CrossRefGoogle Scholar
- 2.N.A. Liu, K.F. Huo, M.T. McDowell, J. Zhao, and Y. Cui, Sci. Rep. 3, 1919 (2013).Google Scholar
- 3.J.L. Cui, F.P. Cheng, J. Lin, J.C. Yang, K. Jiang, Z. Wen, and J.C. Sun, Powder Technol. 311, 1 (2017).CrossRefGoogle Scholar
- 4.S.P. Zhang, S. Zhu, H.L. Zhang, T. Chen, and Y.Q. Xiong, J. Anal. Appl. Pyrolysis. 133, 91 (2018).CrossRefGoogle Scholar
- 5.S.K.S. Hossain, L. Mathur, and P.K. Roy, J. Asian. Ceram. Soc. 6, 299 (2018).CrossRefGoogle Scholar
- 6.T.H. Liou, Carbon 42, 785 (2004).CrossRefGoogle Scholar
- 7.G. Lener, A.A.G. Blanco, O. Furlong, M. Nazzarro, K. Sapag, D.E. Barraco, and E.P. Leiva, Electrochim. Acta 279, 289 (2018).CrossRefGoogle Scholar
- 8.Y. Zhou, Z.Y. Tian, R.J. Fan, S.G. Zhao, R. Zhou, H.J. Guo, and Z.X. Wang, Powder Technol. 284, 365 (2015).CrossRefGoogle Scholar
- 9.B.K. Guo, J. Sha, Z.X. Wang, H. Yang, L.H. Shi, Y.N. Liu, and L.Q. Chen, Electrochem. Commun. 10, 1876 (2008).CrossRefGoogle Scholar
- 10.X.Q. Yang, H. Huang, Z.H. Li, M.L. Zhong, G.Q. Zhang, and D.C. Wu, Carbon 77, 275 (2014).CrossRefGoogle Scholar
- 11.C.C. Zhang, X. Cai, W.Y. Chen, S.Y. Yang, D.H. Xu, Y.P. Fang, and X.Y. Yu, ACS. Sustainable. Chem. Eng. 6(8), 9930 (2018).Google Scholar
- 12.Y.F. Shen, J. Agri. Food. Chem. 65(5), 995 (2017).Google Scholar
- 13.J.L. Cui, Y.F. Cui, S.H. Li, H.L. Sun, Z.S. Wen, and J.C. Sun, ACS. Appl. Mater. Interfaces. 8(44), 30239 (2016).Google Scholar
- 14.Y.M. Ju, J.A. Tang, K. Zhu, Y. Meng, C.Z. Wang, G. Chen, Y.J. Wei, and Y. Gao, Electrochim. Acta 191, 411 (2016).CrossRefGoogle Scholar
- 15.S.W. Han, D.W. Jung, J.H. Jeong, and E.S. Oh, Chem. Eng. J. 254, 597 (2014).CrossRefGoogle Scholar
- 16.C.H. Chia, B. Gong, S.D. Joseph, C.E. Marjo, P. Munroe, and A.M. Rich, Vib. Spectrosc. 62, 248 (2012).CrossRefGoogle Scholar
- 17.K.F. Yu, J. Li, H. Qi, and C. Liang, Chemistryselect. 2, 3627 (2017).CrossRefGoogle Scholar
- 18.Y. Li, F.Y. Wang, J.C. Liang, X.Y. Hu, and K.F. Yu, N. J. Chem. 40, 325 (2016).CrossRefGoogle Scholar
- 19.Q.Q. Wang, X.S. Zhu, Y.H. Liu, Y.Y. Fang, X.S. Zhao, and J.C. Bao, Carbon 127, 658 (2018).CrossRefGoogle Scholar
- 20.L.P. Wang, J. Xue, B. Gao, P. Guo, C.X. Mou, and J.Z. Li, RSC. Adv. 4, 64744 (2014).CrossRefGoogle Scholar
- 21.P.P. Lv, H.L. Zhao, J. Wang, X. Liu, T.H. Zhang, and Q. Xia, J. Power Sources 237, 291 (2013).CrossRefGoogle Scholar
- 22.J.A. Santana Costa and C.M. Paranhos, J. Clean. Prod. 192, 688 (2018).Google Scholar
- 23.O. Fromm, A. Heckmann, U.C. Rodehorst, J. Frerichs, D. Becker, M. Winter, and T. Placke, Carbon 128, 147 (2018).CrossRefGoogle Scholar
- 24.Z.F. Wang, A.T. Smith, W.X. Wang, and L.Y. Sun, Angew. Chem. Int. Edit. 57(42), 13722 (2018).Google Scholar
- 25.P.P. Lv, H.L. Zhao, C.H. Gao, T.H. Zhang, and X. Liu, Electrochim. Acta 152, 345 (2015).CrossRefGoogle Scholar
- 26.H.Q. Xu, S.Z. Zhang, W. He, X.D. Zhang, G.H. Yang, J. Zhang, X.Y. Shi, and L.Z. Wang, RCS Adv. 6, 1930 (2016).Google Scholar
- 27.G.T.K. Fey, Y.D. Cho, C.L. Chen, Y.Y. Lin, T.P. Kumar, and S.H. Chan, Pure Appl. Chem. 82, 2157 (2010).CrossRefGoogle Scholar
- 28.L. Wang, B. Gao, C.J. Peng, X. Peng, J.J. Fu, P.K. Chu, and K.F. Huo, Nanoscale. 7, 13840 (2015).CrossRefGoogle Scholar