Thermal, Electrical and Dielectric Characteristics of SnSbS Thin Films for Solar Cell Applications

  • N. BennajiEmail author
  • Y. Fadhli
  • I. Mellouki
  • R. Lahouli
  • M. Kanzari
  • N. Yacoubi
  • K. Khirouni


Sn3Sb2S6 thin films were elaborated by a vacuum evaporation process, and then they were annealed at 150°C in air for 1 (h). X-ray diffraction results reveal that only the annealed sulfosalt film exhibits a crystalline nature with [416] preferential orientation. The annealing process influences their surface morphology by affecting the size and shape of the Sn3Sb2S6 particles. Then, the thermal conductivity and thermal diffusivity were determined via the theoretical and experimental electro-pyroelectric voltage signals. In addition, we noticed that thermal conductivity and heat capacity values increased by increasing annealing temperature. The electrical and dielectric properties were obtained by impedance spectroscopy technique. At high temperatures, σac conductivity follows the power law of Jonscher, and the σdc variation is the inverse of temperature according to the Arrhenius law. This result indicates that the conduction process is thermally activated, with an activation energy of about 0.813 eV. Finally, we studied some new physical properties of Sn3Sb2S6 thin films; and came to the conclusion that the annealed Sn3Sb2S6 thin film can be promising for solar cell applications.


Thermal detector dielectric properties electrical properties electro-pyroelectric activation energy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    F. Aousgi and M. Kanzari, Energy Procedia 10, 313 (2011).CrossRefGoogle Scholar
  2. 2.
    A. Nisar, S.T. Hussain, M.A. Iqbal, H. Ayesha, M. Arshad, S. Akram, Z. Ali, N. Ahmad, S.M. Abbas, and R. Hussain, Renew. Energy Eng. 55, 13129 (2013).Google Scholar
  3. 3.
    A. Hussain, R. Ahmed, N. Ali, A. Shaari, J. Luo, and Y. Fu, Surf. Coat. Technol. 319, 294 (2017).CrossRefGoogle Scholar
  4. 4.
    A. Gassoumi and M. Kanzari, J. Optoelectron. Adv. Mater. 14, 272 (2012).Google Scholar
  5. 5.
    J. Misiewicz and P. Sitarek, Phys. Status Solidi A 206, 5 (2009).CrossRefGoogle Scholar
  6. 6.
    D. Wagner, and C. Baber, in Solar Cell Design, Proceedings of the National Conference on Undergraduate Research Ithaca College, New York (2011).Google Scholar
  7. 7.
    V.M. Gerresh, Semiconductors and Semimetals (New York: Academic Press, 1995), p. 43.Google Scholar
  8. 8.
    M. Hoheisel and L. Batz, Thin Solid Films 38, 8 (2001).Google Scholar
  9. 9.
    C. McDonnell, O. López, P. Murphy, J.G. Fernández Bolaños, R. Hazell, and M. Bols, J. Am. Chem. Soc. 39, 126 (2004).Google Scholar
  10. 10.
    D. Bilc, S.D. Mahanti, K.F. Hsu, E. Quarez, R. Pcionek, and M.G. Kanatzidis, Phys. Rev. Lett. 93, 146403 (2004).CrossRefGoogle Scholar
  11. 11.
    Y. Fadhli, A. Rabhi, and M. Kanzari, Acta Metall. Sin. (Engl. Lett.) 29, 287 (2016).CrossRefGoogle Scholar
  12. 12.
    A. Gassoumi and M. Kanzari, J. Optoelectron. Adv. Mater. 14, 3 (2012).Google Scholar
  13. 13.
    Y. Fadhli, A. Rabhi, and M. Kanzari, Mater. Sci. Semicond. Process. 26, 282 (2014).CrossRefGoogle Scholar
  14. 14.
    A. Gassoumi and M. Kanzari, Chalcogenides Lett. 6, 163 (2009).Google Scholar
  15. 15.
    S.A. Manolache, A. Duta, L. Isac, M. Nanu, A. Goossens, and J. Schoonman, Thin Solid Films 515, 5957 (2007).CrossRefGoogle Scholar
  16. 16.
    H. Dittrichand and K. Herz, in Proceeding to the 11th International Conference on Ternary and Multinary Compounds, ICTMC-11 (1997), Salford.Google Scholar
  17. 17.
    N. Ali, S.T. Hussain, M.A. Iqbal, K. Hutching, and D. Lane, Optik 124, 4746 (2013).CrossRefGoogle Scholar
  18. 18.
    T. Wagner, M. Krbal, P. Nemec, M. Frumar, T. Wagner, M. Vlcek, V. Perina, A. Mackova, V. Hnatovitz, and S.O. Kasap, Appl. Phys. 79, 1563 (2004).CrossRefGoogle Scholar
  19. 19.
    N. Bennaji, I. Mellouki, and N. Yacoubi, Sens. Lett. 7, 5 (2009).CrossRefGoogle Scholar
  20. 20.
    N. Bennaji, I. Mellouki, and N. Yacoubi, Sens. Transducers 27, 75 (2014).Google Scholar
  21. 21.
    I. Mellouki, Int. J. Eng. Sci. Innov. Technol. 3, 3 (2014).Google Scholar
  22. 22.
    N. Bennaji, A. Mami, I. Mellouki, and N. Yacoubi, J. Therm. Anal. Calorim. 127, 1 (2017).CrossRefGoogle Scholar
  23. 23.
    N. Bennaji, I. Mellouki, and N. Yacoubi, Proc. J. Phys. Conf. Ser. 214, 012138 (2010).CrossRefGoogle Scholar
  24. 24.
    C.G. Koops, Phys. Rev. 83, 1 (1951).CrossRefGoogle Scholar
  25. 25.
    W.D. Kingery, H.K. Bowen, and D.R. Uhlman, Introduction to Ceramics, Chapter 18, 2nd ed. (New York: Wiley, 1976).Google Scholar
  26. 26.
    M.A. Rehman, M.A. Malik, K. Khan, and A. Maqsood, J. Nano Res. 14, 1 (2011).CrossRefGoogle Scholar
  27. 27.
    P. Scherrer, Gottingen. Mathematisch-Physikalische Klasse. 2, 98 (1918).Google Scholar
  28. 28.
    A. Mami, I. Mellouki, M. BenMbarek, M. Amlouk, and N. Yacoubi, IEEE Sens. J. 16, 23 (2016).Google Scholar
  29. 29.
    N. Bennaji, R. Lahouli, Y. Fadhli, I. Mellouki, M. Kanzari, K. Khirouni, N. Yacoubi, and M. Amlouk, Sens. Actuators A 281, 67 (2018).CrossRefGoogle Scholar
  30. 30.
    I. Mellouki, A. Mami, N. Bennaji, and Y. Fadhli, Thermochim. Acta 670, 123 (2018).CrossRefGoogle Scholar
  31. 31.
    K. Praveena and K. Sadhana, Int. J. Sci. Res. Publ. 5, 4 (2015).Google Scholar
  32. 32.
    A.K. Jonscher, Universal Relaxation Law (London: Chelsea Dielectics Press, 1996).Google Scholar
  33. 33.
    M. Peleg, M.D. Normand, and M.G. Corradini, Crit. Rev. Food Sci. Nutr. 52, 9 (2012).CrossRefGoogle Scholar
  34. 34.
    A. Mahmood, Doctor of Philosophy in Physical Chemistry (2015). National Centre of Excellence in Physical Chemistry University of Peshawae, Pakistan.Google Scholar
  35. 35.
    S. Varghese and M. Iype, Orient. J. Chem. 27, 265 (2011).Google Scholar
  36. 36.
    U. Ubale Ashok, R. Welekar Naina, and V. Mitkari Amruta, Mater. Sci. Semicond. Process. 27, 280 (2014).CrossRefGoogle Scholar
  37. 37.
    A.U. Ubale, M.V. Bhute, G.P. Malpe, P.P. Raut, K.S. Chipade, and S.G. Ibrahim, J. Saudi Chem. Soc. 20, 2 (2016).CrossRefGoogle Scholar
  38. 38.
    A. Benhammou, Y. El Hafiane, A. Abourriche, Y. Abouliatim, L. Nibou, A. Yaacoubi, N. Tessier-Doyen, S. Smith, and B. Tanouti, Ceram. Int. 40, 7 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • N. Bennaji
    • 1
    Email author
  • Y. Fadhli
    • 2
  • I. Mellouki
    • 1
  • R. Lahouli
    • 3
  • M. Kanzari
    • 2
  • N. Yacoubi
    • 1
  • K. Khirouni
    • 4
  1. 1.UR Photothermal Laboratory IPEINNabeulTunisia
  2. 2.Laboratoire de Photovoltaïque et Matériaux Semi-conducteursENIT-Université de Tunis El ManarTunisTunisia
  3. 3.Unité de recherche Matériaux Avancés et Nanotechnologies (URMAN), Institut Supérieur des Sciences Appliquées et de Technologie de KasserineUniversité de KairouanKasserineTunisia
  4. 4.Laboratory of Physics of Materials and Nanomaterials Applied to the EnvironmentFaculty of Sciences of GabesErriadh City, GabèsTunisia

Personalised recommendations