Advertisement

Impact of Sn4+ Substitution at Cr3+ Sites on Thermoelectric and Electronic Properties of p-Type Delafossite CuCrO2

  • Sakwiboon Jantrasee
  • Chesta RuttanapunEmail author
Article
  • 23 Downloads

Abstract

The effects of Sn4+ substitution at Cr3+ sites on the thermoelectric and electronic properties of p-type delafossite CuCrO2 have been studied. CuCr1−xSnxO2 (x = 0.01, 0.03) samples were prepared via conventional solid-state reaction. The Seebeck coefficient results confirmed that all the samples exhibited p-type conduction. X-ray photoelectron spectroscopy verified the presence of Sn4+ ions and the appearance of mixed-state Cr3+/Cr2+ ions. The experimental results revealed that addition of Sn impacted the electrical conductivity due to the mixed Cu1+/Cu2+ states while the Seebeck coefficient was affected by the mixed Cr3+/Sn4+ states. The electrical conductivity was governed by the polaron hopping mechanism, and the large Seebeck coefficient was controlled by the spin and orbital degeneracy of the mixed Cr3+/Sn4+ ions. The electrical conductivity activation energy values were 0.410 eV and 0.407 eV while the thermal activation energy values were 0.208 eV and 0.160 eV, for x = 0.01 and 0.03, respectively. The results confirm that Sn4+ substitution at Cr3+ sites impacted the Seebeck coefficient and electronic behavior of delafossite CuCrO2 oxide even for low dopant levels of x = 0.01 and 0.03, resulting in p-type conduction and optically conducting materials.

Keywords

Sn4+-doped CuCrO2 mixed valence polaron conduction p-type delafossite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work is supported by King Mongkut’s Institute of Technology Ladkrabang (KREF145906).

References

  1. 1.
    H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, and H. Hosono, Nature 389, 939 (1997).CrossRefGoogle Scholar
  2. 2.
    C. Ruttanapun, P. Jindajitawat, P. Buranasiri, A. Harnwunggmoung, A. Charoenphakdee, and V. Amornkitbamrung, J. Am. Ceram. Soc. 98, 437 (2015).CrossRefGoogle Scholar
  3. 3.
    S. Nandy, A.N. Banerjee, E. Fortunato, and R. Martin, Rev. Adv. Sci. Eng. 2, 1 (2013).CrossRefGoogle Scholar
  4. 4.
    E. Mugnier, A. Barnabe, and P. Taihades, Solid State Ionics 177, 607 (2006).CrossRefGoogle Scholar
  5. 5.
    C. Ruttanapun, W. Kosalwat, C. Rudradawong, P. Jindajitawat, P. Buranasiri, D. Naenkieng, N. Boonyopakorn, A. Harnwunggmoung, W. Thowladda, W. Neeyakorn, C. Thanachayanont, A. Charoenphakdee, and A. Wichainchai, Energy Proc. 56, 65 (2014).CrossRefGoogle Scholar
  6. 6.
    R. Nagarajan, A.D. Draeseke, A.W. Sleight, and J. Tate, J. Appl. Phys. 89, 12 (2001).CrossRefGoogle Scholar
  7. 7.
    S. Zhou, X. Fang, Z. Deng, D. Li, W. Dong, R. Tao, G. Meng, T. Wang, and X. Zhu, J. Cryst. Growth 310, 5375 (2008).CrossRefGoogle Scholar
  8. 8.
    S. Power and D. Xiong, J. Phys. Chem. C 118, 16375 (2014).CrossRefGoogle Scholar
  9. 9.
    M. Frontzek and G. Ehles, J. Phys.: Condens. Matter 24, 016004 (2012).Google Scholar
  10. 10.
    Y. Ma, Catal. Lett. 144, 1487 (2014).CrossRefGoogle Scholar
  11. 11.
    S. Zhou, X. Fang, Z. Deng, D. Li, W. Dong, R. Yao, G. Meng, and T. Wang, Sens. Actuators B Chem. 143, 119 (2009).CrossRefGoogle Scholar
  12. 12.
    E. Guilmeau, M. Poienar, S. Kremer, S. Marinel, S. Hébert, R. Frésard, and A. Maignan, Solid State Commun. 151, 1798 (2011).CrossRefGoogle Scholar
  13. 13.
    D. Li, X. Fang, W. Dong, Z. Deng, R. Tao, S. Zhou, J. Wang, T. Wang, Y. Zhao, and X. Zhu, J. Phys. D Appl. Phys. 42, 055009 (2009).CrossRefGoogle Scholar
  14. 14.
    H. Hua, Z. Changfei, and L. Wei, Chin. J. Chem. Phys. 17, 161 (2004).Google Scholar
  15. 15.
    T. Elkhouni, M. Amami, P. Strobel, and A. Ben Salah, World J. Condens. Matter Phys. 3, 1 (2013).CrossRefGoogle Scholar
  16. 16.
    A.C. Rastogi, J. Appl. Phys. 104, 023712 (2008).CrossRefGoogle Scholar
  17. 17.
    K. Hayashi, K. Sato, T. Nozaki, and T. Kajitani, Jpn. J. Appl. Phys. 47, 59 (2008).CrossRefGoogle Scholar
  18. 18.
    M. Lalanne, P. Demont, and A. Barnabe, J. Phys. D Appl. Phys. 44, 18541 (2011).CrossRefGoogle Scholar
  19. 19.
    T. Okuda, Y. Beppu, Y. Fujii, T. Kishimoto, K. Uto, T. Onoe, N. Jufuku, S. Hidaka, N. Terada, and S. Miyasaka, J. Phys. Conf. Ser. 150, 042157 (2009).CrossRefGoogle Scholar
  20. 20.
    F. Jlaiel, M. Amami, P. Strobel, and A.B. Salah, Cent. Eur. J. Chem. 9, 953 (2011).Google Scholar
  21. 21.
    C. Ruttanapun J. Appl. Phys. 114, 113108 (2013).Google Scholar
  22. 22.
    C. Rudradawong and C. Ruttanapun, Phys. B Phys. Condens. Matter 526, 21 (2017).CrossRefGoogle Scholar
  23. 23.
    A. Maignana, C. Martin, R. Frésard, V. Eyert, E. Guilmeaua, S. Hébert, M. Poienar, and D. Pelloquin, Solid State Commun. 149, 962 (2009).CrossRefGoogle Scholar
  24. 24.
    S. Zhou, X. Fang, Z. Deng, D. Li, W. Dong, R. Tao, G. Meng, T. Wang, and X. Zhu, J. Cryst. Growth 310,5375 (2008).Google Scholar
  25. 25.
    T.K. Le, J. Solid State Chem. 184, 2387 (2011).CrossRefGoogle Scholar
  26. 26.
    S. Axnanda, W. Zhou, and M.G. White, Phys. Chem. Chem. Phys. 14, 10207 (2012).CrossRefGoogle Scholar
  27. 27.
    T. Yokobori, M. Okawa, K. Konishi, R. Takei, K. Katayama, S. Oozono, T. Shinmura, T. Okuda, H. Wadati, E. Sakai, K. Ono, H. Kumigashira, M. Oshima, T. Sugiyama, E. Ikenaga, N. Hamada, and T. Saitoh, J. Phys. Rev. B 87, 195124 (2013).CrossRefGoogle Scholar
  28. 28.
    B. Zhang, Q. Zhao, A. Chang, Y. Li, Y. Liu, and Y. Wu, Appl. Phys. Lett. 104, 102109 (2014).CrossRefGoogle Scholar
  29. 29.
    M. Tanaka, M. Hasegawa, T. Higuchi, T. Tsukamoto, Y. Tezuka, S. Shin, and H. Takei, Phys. B Condens. Matter 245, 157 (1998).CrossRefGoogle Scholar
  30. 30.
    D. Salazar, D. Arias, O.J. Dura, and M.A. Lopez de la Torre, J. Alloys Compd. 583, 141 (2014).CrossRefGoogle Scholar
  31. 31.
    W. Koshibae, K. Tsutsui, and S. Maekawa, Phys. Rev. B 62, 6869 (2000).CrossRefGoogle Scholar
  32. 32.
    D.C. Ling, C.W. Chiang, Y.F. Wang, Y.J. Lee, and P.H. Yeh, J. Appl. Phys. 109, 07D908 (2011).CrossRefGoogle Scholar
  33. 33.
    S.H. Lim, S. Desu, and A.C. Rastogi, J. Phys. Chem. Solids 69, 2047 (2008).CrossRefGoogle Scholar
  34. 34.
    A. Bera, K. Deb, K. Sarkar, and B. Saha, AIP Conf. Proc. 1832, 120010 (2017).CrossRefGoogle Scholar
  35. 35.
    M.K. Majee, P.A. Bhobe, U.P. Deshpande, and A.K. Nigam, J. Appl. Phys. 122, 225111 (2017).CrossRefGoogle Scholar
  36. 36.
    C. Ruttanapun, J. Solid State Chem. 215, 43 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Smart Materials Research and Innovation Unit, Faculty of ScienceKing Mongkut’s Institute of Technology LadkrabangBangkokThailand
  2. 2.Department of Physics, Faculty of ScienceKing Mongkut’s Institute of Technology LadkrabangBangkokThailand
  3. 3.Thailand Center of Excellence in PhysicsMinistry of Higher Education, Science, Research and InnovationBangkokThailand

Personalised recommendations