Theoretical Study on Factors Influencing the Efficiency of Dπ′–A′–πA Isoindigo-Based Sensitizer for Dye-Sensitized Solar Cells

  • Sarinya Hadsadee
  • Vinich Promarak
  • Taweesak Sudyoadsuk
  • Tinnagon Keawin
  • Nawee Kungwan
  • Siriporn JungsuttiwongEmail author


We investigated metal-free dyes based on isoindigo by performing density functional theory and Time-dependent density functional theory calculations to improve the efficiency of dye-sensitized solar cells. The Dπ′–A′–πA organic dyes (TIDP and TIDT) used triphenylamine as donor, thiophene as the π′-linker between the donor and auxiliary acceptor, and a phenyl or thiophene ring as the π-linker between the auxiliary acceptor and acceptor. TIDP and TIDT exhibit good charge-transfer properties. The TIDP-based device provides better device performance with a PCE of 4.11%. Calculated results reveal that the phenyl ring directly linking the auxiliary acceptor and acceptor causes a small tilt angle in the TiO2–adsorped dye, resulting in enhanced electron-injection rates, more efficient packing of adsorbed dye molecules, and slow charge recombination at the TiO2 surface. The performance of the TIDT-based device (η = 2.46%), arises from decreased electron-injection rates and fast charge recombination caused by the large dihedral angle of the adsorbed dye. This research identifies a potential π′-linker group and reveals the influence of the π-linker on photovoltaic performance in organic dyes.

Graphic Abstract

The phenyl ring directly linking the auxiliary acceptor and acceptor causes a smaller tilt angle in the TiO2-absorbed dye compared to thiophene ring resulting in enhanced electron-injection rates with increasing short-circuit current density (Jsc) as well as slow charge recombination at the TiO2 surface with increasing open-circuit voltage (Voc).


Isoindigo dye DSSC DFT auxiliary acceptor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Conflict of interest

The authors declare that there is no conflict of interest.

Supplementary material

11664_2019_7777_MOESM1_ESM.pdf (750 kb)
Supplementary material 1 (PDF 749 kb)


  1. 1.
    A. Mishra, M.K.R. Fischer, and P. Bäuerle, Angew. Chem. Int. Ed. 48, 2474 (2009).CrossRefGoogle Scholar
  2. 2.
    J. Gong, J. Liang, and K. Sumathy, Renew. Sustain. Energy Rev. 16, 5848 (2012).CrossRefGoogle Scholar
  3. 3.
    F. Gao, Y. Wang, D. Shi, J. Zhang, M. Wang, X. Jing, R. Humphry-Baker, P. Wang, S.M. Zakeeruddin, and M. Grätzel, J. Am. Chem. Soc. 130, 10720 (2008).CrossRefGoogle Scholar
  4. 4.
    M.K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, J. Am. Chem. Soc. 127, 16835 (2005).CrossRefGoogle Scholar
  5. 5.
    C.-Y. Chen, M. Wang, J.-Y. Li, N. Pootrakulchote, L. Alibabaei, C.-H. Ngoc-le, J.-D. Decoppet, J.-H. Tsai, C. Grätzel, C.-G. Wu, S.M. Zakeeruddin, and M. Grätzel, ACS Nano 3, 3103 (2009).CrossRefGoogle Scholar
  6. 6.
    J.R. Jennings, Y. Liu, and Q. Wang, J. Phys. Chem. C 115, 15109 (2011).CrossRefGoogle Scholar
  7. 7.
    A. Yella, H.-W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.-G. Diau, C.-Y. Yeh, S.M. Zakeeruddin, and M. Grätzel, Science 334, 629 (2011).CrossRefGoogle Scholar
  8. 8.
    C.-P. Lee, C.-T. Li, and K.-C. Ho, Mater. Today 20, 267 (2017).CrossRefGoogle Scholar
  9. 9.
    S.-Q. Fan, C. Kim, B. Fang, K.-X. Liao, G.-J. Yang, C.-J. Li, J.-J. Kim, and J. Ko, J. Phys. Chem. C 115, 7747 (2011).CrossRefGoogle Scholar
  10. 10.
    Z. Yao, M. Zhang, H. Wu, L. Yang, R. Li, and P. Wang, J. Am. Chem. Soc. 137, 3799 (2015).CrossRefGoogle Scholar
  11. 11.
    Z. Yao, H. Wu, Y. Li, J. Wang, J. Zhang, M. Zhang, Y. Guo, and P. Wang, Energy Environ. Sci. 8, 3192 (2015).CrossRefGoogle Scholar
  12. 12.
    D.D. Babu, S.R. Gachumale, S. Anandan, and A.V. Adhikari, Dyes Pigm. 112, 183 (2015).CrossRefGoogle Scholar
  13. 13.
    J. Chen, Q. Liu, H. Li, Z. Zhao, Z. Lu, Y. Huang, and D. Xu, Front. Chem. 6, 200 (2018).CrossRefGoogle Scholar
  14. 14.
    Y. Wu and W. Zhu, Chem. Soc. Rev. 42, 2039 (2013).CrossRefGoogle Scholar
  15. 15.
    P. Naik, R. Su, M.R. Elmorsy, A. El-Shafei, and A.V. Adhikari, Photochem. Photobiol. Sci. 17, 302 (2018).CrossRefGoogle Scholar
  16. 16.
    G.-G. Luo, H. Lu, Y.-H. Wang, J. Dong, Y. Zhao, and R.-B. Wu, Dyes Pigm. 134, 498 (2016).CrossRefGoogle Scholar
  17. 17.
    S. Zeng, L. Yin, C. Ji, X. Jiang, K. Li, Y. Li, and Y. Wang, Chem. Commun. 48, 10627 (2012).CrossRefGoogle Scholar
  18. 18.
    K. Narayanaswamy, A. Venkateswararao, V. Gupta, S. Chand, and S.P. Singh, Chem. Commun. 52, 210 (2016).CrossRefGoogle Scholar
  19. 19.
    Y. Wu, W.-H. Zhu, S.M. Zakeeruddin, and M. Grätzel, ACS Appl. Mater. Interfaces 7, 9307 (2015).CrossRefGoogle Scholar
  20. 20.
    A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, Chem. Rev. 110, 6595 (2010).CrossRefGoogle Scholar
  21. 21.
    W. Zhu, Y. Wu, S. Wang, W. Li, X. Li, J. Chen, Z.-S. Wang, and H. Tian, Adv. Funct. Mater. 21, 756 (2011).CrossRefGoogle Scholar
  22. 22.
    Y. Wang, C. Yang, J. Chen, H. Qi, J. Hua, Y. Liu, E. Baranoff, H. Tan, J. Fan, and W. Zhu, Dyes Pigm. 127, 204 (2016).CrossRefGoogle Scholar
  23. 23.
    J.L. Westrup, L.W. Oenning, M.M. da Silva Paula, R. da Costa Duarte, F.S. Rodembusch, T.E.A. Frizon, L. da Silva, and A.G. Dal-Bó, Dyes Pigm. 126, 209 (2016).CrossRefGoogle Scholar
  24. 24.
    Z. Wang, L. Zhu, Z. Shuai, and Z. Wei, Macromol. Rapid Commun. 38, 1700470 (2017).CrossRefGoogle Scholar
  25. 25.
    H. Zhu, W. Li, Y. Wu, B. Liu, S. Zhu, X. Li, H. Ågren, and W. Zhu, ACS Sustain. Chem. Eng. 2, 1026 (2014).CrossRefGoogle Scholar
  26. 26.
    H.C. Ting, Y.H. Chen, L.Y. Lin, S.H. Chou, Y.H. Liu, H.W. Lin, and K.T. Wong, ChemSusChem 7, 457 (2014).CrossRefGoogle Scholar
  27. 27.
    Y. Jiang, Y. Gao, H. Tian, J. Ding, D. Yan, Y. Geng, and F. Wang, Macromolecules 49, 2135 (2016).CrossRefGoogle Scholar
  28. 28.
    H.T. Zaky, Y.G. Saleh, and N.A. Ahmed, J. Enzyme Inhib. Med. Chem. 28, 853 (2013).CrossRefGoogle Scholar
  29. 29.
    B. Liu, Y. Zou, B. Peng, B. Zhao, K. Huang, Y. He, and C. Pan, Polym. Chem. 2, 1156 (2011).CrossRefGoogle Scholar
  30. 30.
    E. Wang, Z. Ma, Z. Zhang, P. Henriksson, O. Inganas, F. Zhang, and M.R. Andersson, Chem. Commun. 47, 4908 (2011).CrossRefGoogle Scholar
  31. 31.
    E. Wang, Z. Ma, Z. Zhang, K. Vandewal, P. Henriksson, O. Inganäs, F. Zhang, and M.R. Andersson, J. Am. Chem. Soc. 133, 14244 (2011).CrossRefGoogle Scholar
  32. 32.
    J. Mei, K.R. Graham, R. Stalder, and J.R. Reynolds, Org. Lett. 12, 660 (2010).CrossRefGoogle Scholar
  33. 33.
    G. Zhang, Y. Fu, Z. Xie, and Q. Zhang, Macromolecules 44, 1414 (2011).CrossRefGoogle Scholar
  34. 34.
    W. Ying, F. Guo, J. Li, Q. Zhang, W. Wu, H. Tian, and J. Hua, ACS Appl. Mater. Interfaces 4, 4215 (2012).CrossRefGoogle Scholar
  35. 35.
    D. Wang, W. Ying, X. Zhang, Y. Hu, W. Wu, and J. Hua, Dyes Pigm. 112, 327 (2015).CrossRefGoogle Scholar
  36. 36.
    M. Pastore and F. De Angelis, ACS Nano 4, 556 (2010).CrossRefGoogle Scholar
  37. 37.
    B. Peng, S. Yang, L. Li, F. Cheng, and J. Chen, J. Chem. Phys. 132, 034305 (2010).CrossRefGoogle Scholar
  38. 38.
    M.P. Sumsalee, Synthesis and Characterization of Isoindigo Derivatives for Optoelectronic Applications. Suranaree University of Science and Technology (2015).Google Scholar
  39. 39.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993).CrossRefGoogle Scholar
  40. 40.
    Y. Zhao and D.G. Truhlar, Acc. Chem. Res. 41, 157 (2008).CrossRefGoogle Scholar
  41. 41.
    A.D. Becke, J. Chem. Phys. 98, 1372 (1993).CrossRefGoogle Scholar
  42. 42.
    T. Yanai, D.P. Tew, and N.C. Handy, Chem. Phys. Lett. 393, 51 (2004).CrossRefGoogle Scholar
  43. 43.
    N.M. O’boyle, A.L. Tenderholt, and K.M. Langner, J. Comput. Chem. 29, 839 (2008).CrossRefGoogle Scholar
  44. 44.
    D.-M. Gu, J.-Z. Zhang, M. Zhang, Y. Geng, and Z.-M. Su, Dyes Pigm. 132, 136 (2016).CrossRefGoogle Scholar
  45. 45.
    G.W.S. Frisch, G.E. Robb, M.A. Cheeseman, J.R. Scalmani, G. Barone, V. Mennucci, B. Petersson, G.A. Nakatsuji, H. Caricato, M. Li, X. Hratchian, H.P. Izmaylov, A.F. Bloino, J. Zheng, G. Sonnenberg, J.L. Hada, M. Ehara, M. Toyota, K. Fukuda, R. Hasegawa, J. Ishida, M. Nakajima, T. Honda, Y. Kitao, O. Nakai, H. Vreven, T. Montgomery, J.A. Peralta Jr, J.E. Ogliaro, F. Bearpark, M. Heyd, J.J. Brothers, E. Kudin, K.N. Staroverov, V.N. Kobayashi, R. Normand, J. Raghavachari, K. Rendell, A. Burant, J.C. Iyengar, S.S. Tomasi, J. Cossi, M. Rega, N. Millam, J.M. Klene, M. Knox, J.E. Cross, J.B. Bakken, V. Adamo, C. Jaramillo, J. Gomperts, R. Stratmann, R.E. Yazyev, O. Austin, A.J. Cammi, R. Pomelli, C. Ochterski, J.W. Martin, R.L. Morokuma, K. Zakrzewski, V.G. Voth, G.A. Salvador, P. Dannenberg, J.J. Dapprich, S. Daniels, A.D. Farkas, O. Foresman, J.B. Ortiz, J.V. Cioslowski, and J. Fox, Gaussian 09 Revision A.02 (Wallingford, CT: Gaussian Inc, 2009).Google Scholar
  46. 46.
    F. De Angelis, G. Vitillaro, L. Kavan, M.K. Nazeeruddin, and M. Grätzel, J. Phys. Chem. C 116, 18124 (2012).CrossRefGoogle Scholar
  47. 47.
    P. Persson, R. Bergström, and S. Lunell, J. Phys. Chem. B 104, 10348 (2000).CrossRefGoogle Scholar
  48. 48.
    R. Tarsang, V. Promarak, T. Sudyoadsuk, S. Namuangruk, N. Kungwan, and S. Jungsuttiwong, ChemPhysChem 15, 3809 (2014).CrossRefGoogle Scholar
  49. 49.
    S. Jungsuttiwong, R. Tarsang, T. Sudyoadsuk, V. Promarak, P. Khongpracha, and S. Namuangruk, Org. Electron. 14, 711 (2013).CrossRefGoogle Scholar
  50. 50.
    S. Jungsuttiwong, T. Yakhanthip, Y. Surakhot, J. Khunchalee, T. Sudyoadsuk, V. Promarak, N. Kungwan, and S. Namuangruk, J. Comput. Chem. 33, 1517 (2012).CrossRefGoogle Scholar
  51. 51.
    T. Yakhanthip, S. Jungsuttiwong, S. Namuangruk, N. Kungwan, V. Promarak, T. Sudyoadsuk, and P. Kochpradist, J. Comput. Chem. 32, 1568 (2011).CrossRefGoogle Scholar
  52. 52.
    S. Namuangruk, R. Fukuda, M. Ehara, J. Meeprasert, T. Khanasa, S. Morada, T. Kaewin, S. Jungsuttiwong, T. Sudyoadsuk, and V. Promarak, J. Phys. Chem. C 116, 25653 (2012).CrossRefGoogle Scholar
  53. 53.
    R. Tarsang, V. Promarak, T. Sudyoadsuk, S. Namuangruk, and S. Jungsuttiwong, J. Photochem. Photobiol. A 273, 8 (2014).CrossRefGoogle Scholar
  54. 54.
    R. Tarsang, V. Promarak, T. Sudyoadsuk, S. Namuangruk, N. Kungwan, P. Khongpracha, and S. Jungsuttiwong, RSC Adv. 5, 38130 (2015).CrossRefGoogle Scholar
  55. 55.
    E. Ronca, M. Pastore, L. Belpassi, F. Tarantelli, and F. De Angelis, Energy Environ. Sci. 6, 183 (2013).CrossRefGoogle Scholar
  56. 56.
    Y.-X. Weng, Y.-Q. Wang, J.B. Asbury, H.N. Ghosh, and T. Lian, J. Phys. Chem. B 104, 93 (2000).CrossRefGoogle Scholar
  57. 57.
    F. De Angelis, A. Tilocca, and A. Selloni, J. Am. Chem. Soc. 126, 15024 (2004).CrossRefGoogle Scholar
  58. 58.
    M. Khoudiakov, A.R. Parise, and B.S. Brunschwig, J. Am. Chem. Soc. 125, 4637 (2003).CrossRefGoogle Scholar
  59. 59.
    F. De Angelis, S. Fantacci, E. Mosconi, M.K. Nazeeruddin, and M. Grätzel, J. Phys. Chem. C 115, 8825 (2011).CrossRefGoogle Scholar
  60. 60.
    B. Delley and D.E. Ellis, J. Chem. Phys. 76, 1949 (1982).CrossRefGoogle Scholar
  61. 61.
    T. Lu and F. Chen, J. Comput. Chem. 33, 580 (2012).CrossRefGoogle Scholar
  62. 62.
    C.L. Wang, J. Wang, F.Q. Bai, J. Chen, and H.X. Zhang, Int. J. Quantum Chem. 114, 560 (2014).CrossRefGoogle Scholar
  63. 63.
    R. Zhang, W. Liu, R. Hu, Y. Ma, Y. Sun, J. Zhang, Y. Pu, J. Yang, L. Chu, and X.A. Li, Sol. Energy Mater. Sol. Cells 191, 183 (2019).CrossRefGoogle Scholar
  64. 64.
    X. Mu, J. Wang, and M. Sun, J. Phys. Chem. C 123, 14132 (2019).CrossRefGoogle Scholar
  65. 65.
    H. Zong, J. Wang, X. Mu, X. Xu, J. Li, X. Wang, F. Long, J. Wang, and M. Sun, Phys. Chem. Chem. Phys. 20, 13558 (2018).CrossRefGoogle Scholar
  66. 66.
    R. Li, X. Wang, Y. Zhou, H. Zong, M. Chen, and M. Sun, J. Nanophotonics 12, 1 (2018).Google Scholar
  67. 67.
    H. Zong, X. Mu, J. Wang, H. Zhao, Y. Shi, and M. Sun, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 209, 228 (2019).CrossRefGoogle Scholar
  68. 68.
    B. Xu, Y. Li, P. Song, F. Ma, and M. Sun, Sci. Rep. 7, 45688 (2017).CrossRefGoogle Scholar
  69. 69.
    H. Zong, X. Wang, J. Quan, C. Tian, and M. Sun, Phys. Chem. Chem. Phys. 20, 19720 (2018).CrossRefGoogle Scholar
  70. 70.
    X. Shi, Y. Yang, L. Wang, and Y. Li, J. Phys. Chem. C 123, 4007 (2019).CrossRefGoogle Scholar
  71. 71.
    Y. Li, B. Xu, P. Song, F. Ma, and M. Sun, J. Phys. Chem. C 121, 12546 (2017).CrossRefGoogle Scholar
  72. 72.
    X. Wang, J. Xu, M. Li, D. Fang, B. Chen, L. Wang, and W. Xu, RSC Adv. 3, 5227 (2013).CrossRefGoogle Scholar
  73. 73.
    L.L. Estrella, M.P. Balanay, and D.H. Kim, J. Phys. Chem. A 120, 5917 (2016).CrossRefGoogle Scholar
  74. 74.
    L.L. Estrella, S.H. Lee, and D.H. Kim, Dyes Pigm. 165, 1 (2019).CrossRefGoogle Scholar
  75. 75.
    P. Ren, C. Sun, Y. Shi, P. Song, Y. Yang, and Y. Li, J. Mater. Chem. C 7, 1934 (2019).CrossRefGoogle Scholar
  76. 76.
    H.-H.G. Tsai, J.-C. Hu, C.-J. Tan, Y.-C. Sheng, and C.-C. Chiu, J. Phys. Chem. A 120, 8813 (2016).CrossRefGoogle Scholar
  77. 77.
    B.C. O’Regan, K. Walley, M. Juozapavicius, A. Anderson, F. Matar, T. Ghaddar, S.M. Zakeeruddin, C. Klein, and J.R. Durrant, J. Am. Chem. Soc. 131, 3541 (2009).CrossRefGoogle Scholar
  78. 78.
    A.N.M. Green, R.E. Chandler, S.A. Haque, J. Nelson, and J.R. Durrant, J. Phys. Chem. B 109, 142 (2005).CrossRefGoogle Scholar
  79. 79.
    C.E. Richards, A.Y. Anderson, S. Martiniani, C. Law, and B.C. O’Regan, J. Phys. Chem. Lett. 3, 1980 (2012).CrossRefGoogle Scholar
  80. 80.
    M. Tuikka, P. Hirva, K. Rissanen, J. Korppi-Tommola, and M. Haukka, Chem. Commun. 47, 4499 (2011).CrossRefGoogle Scholar
  81. 81.
    J.N. Clifford, E. Palomares, M.K. Nazeeruddin, M. Grätzel, and J.R. Durrant, J. Phys. Chem. C 111, 6561 (2007).CrossRefGoogle Scholar
  82. 82.
    J. Nyhlen, G. Boschloo, A. Hagfeldt, L. Kloo, and T. Privalov, ChemPhysChem 11, 1858 (2010).Google Scholar
  83. 83.
    M. Xie, J. Wang, F.-Q. Bai, L. Hao, and H.-X. Zhang, Dyes Pigm. 120, 74 (2015).CrossRefGoogle Scholar
  84. 84.
    M. Xie, F.-Q. Bai, J. Wang, C.-P. Kong, J. Chen, and H.-X. Zhang, Comput. Mater. Sci. 111, 239 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Chemistry and Center of Excellence for Innovation in Chemistry, Center for Organic, Electronic, and Alternative Energy, Faculty of ScienceUbon Ratchathani UniversityUbon RatchathaniThailand
  2. 2.Department of Material Science and Engineering, School of Molecular Science and EngineeringVidyasirimedhi Institute of Science and TechnologyRayongThailand
  3. 3.Department of Chemistry, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  4. 4.Center of Excellence in Materials Science and TechnologyChiang Mai UniversityChiang MaiThailand

Personalised recommendations