Advertisement

Synthesis of Ag Nanoparticle-Decorated ZnO Nanorods Adopting the Low-Temperature Hydrothermal Method

  • Kanchana Shahi
  • R. S. Singh
  • Jai Singh
  • Maria Aleksandrova
  • Ajaya Kumar SinghEmail author
Article
  • 1 Downloads

Abstract

Vertically aligned and highly dense Zinc oxide (ZnO) nanorods (NRs) have been successfully synthesized by a two-step hydrothermal method and decorated by silver (Ag) nanoparticles (NPs) via a dip coating technique. Absorption spectra indicate the presence of metal Ag NPs. The photoluminescence (PL) spectrum of as-grown ZnO nanorods shows ultra violet (UV) emission centered around 390 nm and a sharp defect-related emission peak around 580 nm. The presence of Ag NPs on the ZnO NRs shows a significant red shift in PL peak position in the visible region and a complete quenching of UV emission. The changes in UV–Vis and PL spectra of ZnO NRs decorated with Ag metal NPs are studied and discussed.

Keywords

ZnO nanorods hydrothermal dip coating surface plasmon photoluminescence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

A portion of this research was performed using facilities at CeNSE/INUP/PE26/2018-2019, funded by Ministry of Electronics and Information Technology (MeitY), Govt. of India, and located at the Indian Institute of Science, Bengaluru.

References

  1. 1.
    A. Janotti and C.G. Van de Walle, Rep. Prog. Phys. 72, 126501 (2009).CrossRefGoogle Scholar
  2. 2.
    M. Willander, O. Nur, Q.X. Zhao, L.L. Yang, M. Lorenz, B.Q. Cao, J.Z. Perez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H.S. Kwack, J. Guinard, and D.L.S. Dang, Nanotechnology 20, 332001 (2009).CrossRefGoogle Scholar
  3. 3.
    Z.L. Wang, Mater. Today 7, 26 (2004).CrossRefGoogle Scholar
  4. 4.
    U. Ozgur, Ya.I. Alivov, C. Liu, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, and H. Morkpv, J. Appl. Phys. 98, 1 (2005).CrossRefGoogle Scholar
  5. 5.
    J.W.P. Hsu, D.R. Tallant, R.L. Simpson, N.A. Missert, and R.G. Copeland, Appl. Phys. Lett. 88, 252103 (2006).CrossRefGoogle Scholar
  6. 6.
    K.N. Hui, K.S. Hui, Q. Xia, T.V. Cuong, Y.R. Cho, J. Singh, P. Kumar, and E.J. Kim, ECS Solid State Lett.2, (2013).Google Scholar
  7. 7.
    X. Wang, J. Song, and Z.L. Wang, J. Mater. Chem. 17, 711 (2007).CrossRefGoogle Scholar
  8. 8.
    C. Wang, B. Mao, E. Wang, Z. Kang, and C. Tian, Solid State Commun. 11, 141 (2007).Google Scholar
  9. 9.
    L. Wang, K. Chen, and L. Dong, J. Phys. Chem. C 114, 41 (2010).CrossRefGoogle Scholar
  10. 10.
    J. Singh, R.S. Tiwari, and O.N. Srivastava, J. Nanosci. Nanotechnol. 7, 1783 (2007).CrossRefGoogle Scholar
  11. 11.
    J. Liu, Y.H. Ahn, J.Y. Park, K.H. Koh, and S. Lee, Nanotechnology 20, 445203 (2009).CrossRefGoogle Scholar
  12. 12.
    J.J. Wu, S.C. Liu, C.T. Wu, and K.H. Chen, Appl. Phys. Lett. 81, 1312 (2002).CrossRefGoogle Scholar
  13. 13.
    X. Wang, C.J. Summers, and Z.L. Wang, Nano Lett. 4, 423 (2004).CrossRefGoogle Scholar
  14. 14.
    E. Kärber, T. Raadik, T. Dedova, J. Krustok, A. Mere, V. Mikli, and M. Krunks, Nanoscale Res. Lett. 6, 359 (2011).CrossRefGoogle Scholar
  15. 15.
    W. Lee, H.G. Sohn, and J.M. Myoung, Mater. Sci. Forum 449, 1245 (2004).CrossRefGoogle Scholar
  16. 16.
    J. Singh, P.K. Srivastava, P.K. Siwach, H.K. Singh, R.S. Tiwari, and O.N. Srivastava, Sci. Adv. Mater. 4, 467 (2012).CrossRefGoogle Scholar
  17. 17.
    Z.H. Ibupoto, K. Khun, M. Eriksson, M. AlSalhi, M. Atif, A. Ansari, and M. Willander, Materials 6, 3584 (2013).CrossRefGoogle Scholar
  18. 18.
    V.A. Fonoberov, K.A. Alim, A.A. Balandin, F. Xiu, and J. Liu, Phys. Rev. B 73, 165317 (2006).CrossRefGoogle Scholar
  19. 19.
    J.V. Foreman, J. Li, H. Peng, S. Choi, H.O. Everitt, and J. Liu, Nano Lett. 6, 1126 (2006).CrossRefGoogle Scholar
  20. 20.
    Y.L. Wu, A.I.Y. Tok, F.Y.C. Boey, X.T. Zeng, and X.H. Zhang, Appl. Surf. Sci. 253, 5473 (2007).CrossRefGoogle Scholar
  21. 21.
    A. Bera and D. Basak, ACS Appl. Mater. Interfaces 2, 408 (2009).CrossRefGoogle Scholar
  22. 22.
    J.P. Richters, T. Voss, L. Wischmeier, I. Rückmann, and J. Gutowski, Appl. Phys. Lett. 92, 011103 (2008).CrossRefGoogle Scholar
  23. 23.
    J. Chang, C.K. Najeeb, J.-H. Lee, M. Lee, and J.-H. Kim, J. Phys. D Appl. Phys. 44, 095101 (2011).CrossRefGoogle Scholar
  24. 24.
    K. Shahi, R.S. Singh, A.K. Singh, M. Aleksandrova, and R. Khenata, Appl. Phys. A 124, 277 (2018).CrossRefGoogle Scholar
  25. 25.
    C.W. Cheng, E.J. Sie, B. Liu, C.H.A. Huan, T.C. Sum, H.D. Sun, and H.J. Fan, Appl. Phys. Lett. 96, 071107 (2010).CrossRefGoogle Scholar
  26. 26.
    S. Dhara and P.K. Giri, J. Appl. Phys. 110, 124317 (2011).CrossRefGoogle Scholar
  27. 27.
    P.S. Chauhan, A. Rai, A. Gupta, and S. Bhattacharya, Mater. Res. Express 4, 055004 (2017).CrossRefGoogle Scholar
  28. 28.
    Y. Chen, W.H. Tse, L. Chen, J. Zhang, and Chen, Nanoscale Res. Lett. 10, 106 (2015).CrossRefGoogle Scholar
  29. 29.
    K. Saoud, R. Alsoubaihi, N. Bensalah, T. Bora, M. Bertino, and J. Dutta, Mater. Res. Bull. 63, 134 (2015).CrossRefGoogle Scholar
  30. 30.
    B. Slimi, I.B. Assaker, A. Kriaa, B. Mari, and R. Chtourou, J. Solid State Electrochem 21, 1253 (2017).CrossRefGoogle Scholar
  31. 31.
    L.E. Greene, M. Law, J. Goldberger, F. Kim, J.C. Johnson, Y. Zhang, R.J. Saykally, and P. Yang, Angew. Chem. Int. Ed. 42, 3031 (2003).CrossRefGoogle Scholar
  32. 32.
    P. Fageria, S. Gangopadhyay, and S. Pande, RSC Adv. 4, 24962 (2014).CrossRefGoogle Scholar
  33. 33.
    M.D.L. Ruiz-Peralta, U. Pal, and R.S. Zeferino, ACS Appl. Mater. Interfaces 4, 4807 (2012).CrossRefGoogle Scholar
  34. 34.
    A.J. Cheah, W.S. Chiu, P.S. Khiew, H. Nakajima, T. Sarasota, P. Songsiriritthigul, S. Radiman, and M.A.A. Hamid, Catal. Sci. Technol. 5, 4133 (2015).CrossRefGoogle Scholar
  35. 35.
    S. Kandula and P. Jeevanandam, RSC Adv. 5, 76150 (2015).CrossRefGoogle Scholar
  36. 36.
    S. Kuriakose, V. Choudhary, B. Satpati, S. Mohapatra, and Beilstein, J. Nanotechnol. 5, 639 (2014).Google Scholar
  37. 37.
    S.N.H. Daud, C.Y. Haw, W.S. Chiu, Z. Aspanut, M.Y. Chia, N.H. Khanis, P.S. Khiew, and M.A.A. Hamid, Mater. Sci. Semicond. Process. 56, 228 (2016).CrossRefGoogle Scholar
  38. 38.
    M.Y. Chia, W.S. Chiu, S.N.H. Daud, P.S. Khiew, S. Radiman, R. Abd-Shukor, and M.A.A. Hamid, Mater. Charact. 106, 185 (2015).CrossRefGoogle Scholar
  39. 39.
    X.D. Zhou, X.H. Xiao, J.X. Xu, G.X. Cai, F. Ren, and C.Z. Jiang, Europhys. Lett. Assoc. 93, 5 (2011).Google Scholar
  40. 40.
    X. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang, and R. Liu, Sci. Rep. 4, 1 (2014).Google Scholar
  41. 41.
    H.H. Park, X. Zhang, K.W. Lee, A. Sohn, D.W. Kim, J. Kim, J.W. Song, Y.S. Choi, H.K. Lee, S.H. Jung, I.G. Lee, Y.D. Cho, H.B. Shin, H.K. Sung, K.H. Park, H.K. Kang, W.K. Park, and H.H. Park, Nanoscale 7, 20717 (2015).CrossRefGoogle Scholar
  42. 42.
    Y. Arakawa, M. Nomura, S. Iwamoto, SPIE Newsroom, (2010).Google Scholar
  43. 43.
    A. Christ, S.G. Tikhodeev, N.A. Gippius, J. Kuhl, and H. Giessen, Phys. Rev. Lett. 91, 183901 (2003).CrossRefGoogle Scholar
  44. 44.
    D.E. Gomez, K.C. Vernon, P. Mulvaney, and T.J. Davis, Nano Lett. 10, 274 (2009).CrossRefGoogle Scholar
  45. 45.
    B. Piccione, C.O. Aspetti, C.H. Cho, and R. Agarwal, Rep. Prog. Phys. 77, 8 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of PhysicsGovt. V.Y.T. PG. Autonomous CollegeDurgIndia
  2. 2.Department of PhysicsDr. Harisingh Gour Central UniversitySagarIndia
  3. 3.Department of MicroelectronicsTechnical University of SofiaSofiaBulgaria
  4. 4.Department of ChemistryGovt. V.Y.T. PG. Autonomous CollegeDurgIndia

Personalised recommendations