Phase Transition, Large Strain and Energy Storage in Ferroelectric (Bi0.5Na0.5)TiO3-BaTiO3 Ceramics Tailored by (Mg1/3Nb2/3)4+ Complex Ions

  • Yabin Sun
  • Yangyang Zhao
  • Jiwen XuEmail author
  • Ling YangEmail author
  • Changrong Zhou
  • Guanghui Rao
  • Hua Wang


Lead-free relaxor-ferroelectric (Mg1/3Nb2/3)4+ complex ions modified (Bi0.5Na0.5)0.94Ba0.06TiO3 (BNBT-xMN) ceramics were fabricated by traditional solid-phase reaction sintering, and the effects of (Mg1/3Nb2/3)4+ complex ions on the structural, ferroelectric, dielectric, energy storage, and strain properties of these ceramics were studied. All of the samples illustrated a single perovskite phase with a pseudo-cubic structure. Electric field-induced polarization and strain hysteresis loops indicated the occurrence of reversible ferroelectric-to-relaxor phase transition, which gave rise to a large strain of 0.49%. (Mg1/3Nb2/3)4+ complex ions greatly influenced the coercive field and remanent polarization of the ceramics; these properties also affected energy storage density of the materials. The optimal energy storage density and efficiency of the ceramics were 0.54 J/cm3 and 38.4%, respectively, when x = 0.04. These results may stem from the electric field-induced transition between the ferroelectric and relaxor-ferroelectric phase of the proposed ceramics.


(Mg1/3Nb2/3)4+ energy storage strain dielectric BNT-BT 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is supported by the National Nature Science Foundation of China (11664006, 61741105), Guangxi Nature Science Foundation (2016GXNSFAA380069) and Guangxi Key Laboratory of Information Materials (161001-Z, 171009-Z).


  1. 1.
    Y. Li, W. Chen, Q. Xu, J. Zhou, X. Gu, and S. Fang, Mater. Chem. Phys. 94, 328 (2005).CrossRefGoogle Scholar
  2. 2.
    X. Feng and Y. Xi, Ferroelectrics 231, 121 (1999).CrossRefGoogle Scholar
  3. 3.
    S. Hajra, S. Sahoo, R. Das, and R.N.P. Choudhary, J. Alloys Compd. 750, 507 (2018).CrossRefGoogle Scholar
  4. 4.
    L.K. Pradhan, R. Pandey, S. Kumar, S. Kumari, and M. Kar, J. Mater. Sci. Mater. Electron. 30, 9547 (2019).CrossRefGoogle Scholar
  5. 5.
    W. Ma, Y. Zhu, M.A. Marwat, P. Fan, B. Xie, D. Salamon, Z.G. Ye, and H. Zhang, J. Mater. Chem. C 7, 281 (2019).CrossRefGoogle Scholar
  6. 6.
    A. Verma, A.K. Yadav, S. Kumar, V. Srihari, P. Rajput, V.R. Reddy, R. Jangir, H.K. Poshwal, S.W. Liu, S. Biring, and S. Sen, J. Appl. Phys. 125, 054101 (2019).CrossRefGoogle Scholar
  7. 7.
    A. Verma, A.K. Yadav, S. Kumar, and S. Sen, AIP Conference Proceedings 1942, 030024 (2018).CrossRefGoogle Scholar
  8. 8.
    B. Parija, T. Badapanda, S. Panigrahi, and T.P. Sinha, J. Mater. Sci. Mater. Electron. 24, 402 (2013).CrossRefGoogle Scholar
  9. 9.
    H. Ni, L. Luo, W. Li, Y. Zhu, and H. Luo, J. Alloys Compd. 509, 3958 (2011).CrossRefGoogle Scholar
  10. 10.
    F. Liu, O. Wahyudi, L. Yiqing, and Y. Li, Ceram. Int. 41, S31 (2015).CrossRefGoogle Scholar
  11. 11.
    A. Ullah, C.W. Ahn, K.B. Jang, A. Hussain, and I.W. Kim, Ferroelectrics 404, 6 (2010).CrossRefGoogle Scholar
  12. 12.
    A. Verma, A.K. Yadav, S. Kumar, V. Srihari, P. Rajput, V.R. Reddy, R. Jangir, H.K. Poshwal, S.W. Liu, S. Biring, and S. Sen, J. Appl. Phys. 123, 224101 (2018).CrossRefGoogle Scholar
  13. 13.
    C. Wang, T. Xia, and X. Lou, Ceram. Int. 44, 22053 (2018).CrossRefGoogle Scholar
  14. 14.
    T. Badapanda, S. Sahoo, and P. Nayak, IOP Conf. Ser. Mater. Sci. Eng. 178, 012032 (2017).CrossRefGoogle Scholar
  15. 15.
    P. Fan, Y. Zhang, B. Xie, Y. Zhu, W. Ma, B. Yang, X. Jinlong, J. Xiao, and H. Zhang, Ceram. Int. 44, 3211 (2018).CrossRefGoogle Scholar
  16. 16.
    S. Pang, L. Yang, J. Qin, H. Qin, H. Xie, H. Wang, C. Zhou, and X. Jiwen, Appl. Phys. A 125, 119 (2019).CrossRefGoogle Scholar
  17. 17.
    Q. Wei, M. Zhu, M. Zheng, and Y. Hou, J. Alloys Compd. 782, 611 (2019).CrossRefGoogle Scholar
  18. 18.
    Y. Pu, L. Zhang, M. Yao, W. Ge, and M. Chen, Mater. Lett. 189, 232 (2017).CrossRefGoogle Scholar
  19. 19.
    G. Yao, X. Wang, Y. Wu, and L. Li, J. Am. Ceram. Soc. 95, 614 (2011).CrossRefGoogle Scholar
  20. 20.
    H. Xie, Y. Zhao, J. Xu, L. Yang, C. Zhou, H. Zhang, X. Zhang, W. Qiu, and H. Wang, J. Alloys Compd. 743, 73 (2018).CrossRefGoogle Scholar
  21. 21.
    X. Zhou, C. Zhou, Q. Zhou, H. Yang, Z. Cen, J. Cheng, L. Cao, and Q. Fan, J. Electron. Mater. 43, 755 (2014).CrossRefGoogle Scholar
  22. 22.
    R. Cheng, Z. Xu, R. Chu, J. Hao, J. Du, W. Ji, and G. Li, Ceram. Int. 41, 8119 (2015).Google Scholar
  23. 23.
    Z. Xiong, B. Tang, X. Zhang, C. Yang, and S. Zhang, Ceram. Int. 44, 19058 (2018).CrossRefGoogle Scholar
  24. 24.
    M.Q. Awan, J. Ahmad, A. Berlie, Q. Sun, R.L. Withers, and Y. Liu, Ceram. Int. 44, 12767 (2018).CrossRefGoogle Scholar
  25. 25.
    K. Sood, K. Singh, and O.P. Pandey, J. Mater. Sci 47, 4520 (2012).CrossRefGoogle Scholar
  26. 26.
    J. Xing, Z. Shan, K. Li, J. Bian, X. Lin, W. Wang, and F. Huang, J. Phys. Chem. Solids 69, 23 (2008).CrossRefGoogle Scholar
  27. 27.
    A. Verma, A.K. Yadav, S. Kumar, V. Srihari, R. Jangir, H.K. Poswal, S. Biring, and S. Sen, J. Alloys Compd. 792, 95 (2019).CrossRefGoogle Scholar
  28. 28.
    G. Dong, H. Fan, J. Shi, and M. Li, J. Am. Ceram. Soc. 98, 1150 (2015).CrossRefGoogle Scholar
  29. 29.
    W. Bai, D. Chen, P. Zheng, J. Zhang, F. Wen, B. Shen, J. Zhai, and Z. Ji, J. Alloys Compd. 709, 646 (2017).CrossRefGoogle Scholar
  30. 30.
    L. Li, J. Zhang, R.-X. Wang, M. Zheng, Y. Hou, H. Zhang, S.-T. Zhang, and M. Zhu, J. Eur. Ceram. Soc. 39, 1827 (2019).CrossRefGoogle Scholar
  31. 31.
    W. Bai, D. Chen, P. Zheng, B. Shen, J. Zhai, and Z. Ji, Dalton. Trans. 45, 8573 (2016).CrossRefGoogle Scholar
  32. 32.
    H. Zhang, D.Y. Zheng, S.M. Hu, C. Cheng, G.G. Peng, J. Zhang, and L.L. Li, J. Mater. Sci. Mater. Electron. 28, 67 (2017).CrossRefGoogle Scholar
  33. 33.
    H. Lidjici, B. Lagoun, M. Berrahal, M. Rguitti, M.A. Hentatti, and H. Khemakhem, J. Alloys Compd. 618, 643 (2015).CrossRefGoogle Scholar
  34. 34.
    S.N. Seo, J.H. Cho, B.I. Kim, and E.S. Kim, Ceram. Int. 38, S327 (2012).CrossRefGoogle Scholar
  35. 35.
    W. Bai, L. Wang, X. Zhao, P. Zheng, F. Wen, L. Li, J. Zhai, and Z. Ji, Dalton. Trans. 48, 10160 (2019).CrossRefGoogle Scholar
  36. 36.
    M. Chandrasekhar and P. Kumar, Ceram. Int. 41, 5574 (2015).CrossRefGoogle Scholar
  37. 37.
    T. Tani, T. Kimura, and Y. Saito, 17th IEEE International Symposium on the Applications of Ferroelectrics, vol. 3, p. 1 (2008).Google Scholar
  38. 38.
    J. Hao, B. Shen, J. Zhai, C. Liu, and X. Gao, J. Am. Ceram. Soc. 96, 3133 (2013).CrossRefGoogle Scholar
  39. 39.
    D.S. Yin, Z.H. Zhao, Y.J. Dai, Z. Zhao, X.W. Zhang, and S.H. Wang, J. Am. Ceram. Soc. 99, 2354 (2013).CrossRefGoogle Scholar
  40. 40.
    C. Zhou and X. Liu, Piezoelectr. Acoustooptics 30, 480 (2008).Google Scholar
  41. 41.
    V. Westphal, W. Kleemann, and M.D. Glinchuk, Phys. Rev. Lett. 68, 847 (1992).CrossRefGoogle Scholar
  42. 42.
    G. Viola, H. Ning, X. Wei, M. Deluca, A. Adomkevicius, J. Khaliq, M. John Reece, and H. Yan, J. Appl. Phys. 114, 014107 (2013).CrossRefGoogle Scholar
  43. 43.
    Q. Xu, H. Liu, Z. Song, X. Huang, A. Ullah, L. Zhang, J. Xie, H. Hao, M. Cao, and Z. Yao, J. Mater. Sci. Mater. Electron. 27, 322 (2016).CrossRefGoogle Scholar
  44. 44.
    C. Yang, E. Sun, B. Yang, and W. Cao, J. Phys. D Appl. 51, 415303 (2018).CrossRefGoogle Scholar
  45. 45.
    J. Hao, B. Shen, J. Zhai, and H. Chen, J. Appl. Phys. 115, 034101 (2014).CrossRefGoogle Scholar
  46. 46.
    A. Hussain, J.U. Rahman, A. Zaman, R.A. Malik, J.S. Kim, T.K. Song, W.J. Kim, and M.H. Kim, Mater. Chem. Phys. 143, 1282 (2014).CrossRefGoogle Scholar
  47. 47.
    A. Chauhan, S. Patel, R. Vaish, and C.R. Bowen, Materials 8, 8009 (2015).CrossRefGoogle Scholar
  48. 48.
    Y. Li, W. Cao, Q. Li, Q. Yan, J. Gao, F. Zhuo, X. Xi, Y. Zhang, and X. Chu, Appl. Phys. Lett. 104, 729 (2014).Google Scholar
  49. 49.
    C. Wang, X. Lou, T. Xia, and S. Tian, Ceram. Int. 43, 9253 (2017).CrossRefGoogle Scholar
  50. 50.
    W. Jo, S. Schaab, E. Sapper, L.A. Schmitt, H.J. Kleebe, A.J. Bell, and J. Rödel, J. Appl. Phys. 110, 074106 (2011).CrossRefGoogle Scholar
  51. 51.
    H.-S. Han, W. Jo, J. Rödel, I.-K. Hong, W.-P. Tai, and J.-S. Lee, J. Phys. Condens. Matter. 24, 365901 (2012).CrossRefGoogle Scholar
  52. 52.
    J. Zang, W. Jo, H. Zhang, and J. Rödel, J. Eur. Ceram. Soc. 34, 37 (2014).CrossRefGoogle Scholar
  53. 53.
    K. Tong, C. Zhou, J. Wang, Q. Li, L. Yang, J. Xu, W. Zeng, G. Chen, C. Yuan, and G. Rao, Ceram. Int. 43, 3734 (2017).CrossRefGoogle Scholar
  54. 54.
    S. Pattipaka, A.R. James, and P. Dobbidi, J. Alloys Compd. 765, 1195 (2018).CrossRefGoogle Scholar
  55. 55.
    G.A. Smolensky and A.I. Agranovus, Sov. Phys. Solid State 6, 429 (1995).Google Scholar
  56. 56.
    S. Nomura and K. Uchino, Ferroelectr. Lett. 44, 55 (1982).Google Scholar
  57. 57.
    C.C. Jin, F.F. Wang, L.L. Wei, J. Tang, Y. Li, Q.R. Yao, C.Y. Tian, and W.Z. Shi, J. Alloys Compd. 585, 185 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Guangxi Key Laboratory of Information MaterialsGuilin University of Electronic TechnologyGuilinPeople’s Republic of China

Personalised recommendations