Advertisement

Effects of Calcining Temperature on Structure and Dielectric and Ferroelectric Properties of Sol-Gel Synthesized Ba0.85Ca0.15Zr0.1Ti0.9O3 Ceramics

  • X. W. WangEmail author
  • B. H. Zhang
  • G. Feng
  • L. Y. Sun
  • Y. C. Shi
  • Y. C. Hu
  • J. Shang
  • S. Y. Shang
  • S. Q. Yin
  • X. E. Wang
Article
  • 1 Downloads

Abstract

Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) powders were prepared by sol-gel process followed by calcining at different temperatures varying from 600°C to 950°C, and the BCZT ceramics were then prepared using the as-synthesized powders. The effect of calcining temperature on structure, dielectric properties and ferroelectric properties of BCZT ceramics were studied. Impurity was observed in powders calcined at 600°C, and single-phase perovskite structure was obtained when calcining temperature increased to 650°C, which was significantly lower than that of the solid-state reaction. The high-density ceramics with homogenous microstructure were obtained by sintering at 1300°C for 2 h. The dielectric constants as a function of measuring temperature exhibited a diffuse phase transition peak. With the increase of calcining temperature, the slimmer P–E loops were obtained, and the BCZT ceramic calcined at 950°C exhibits a relatively high dielectric constant (εr = 2013) and low dielectric loss (tan δ = 0.020) at 1 kHz and room temperature.

Keywords

Sol-gel calcining temperature microstructure dielectric ferroelectric 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work has been supported by the National Natural Science Foundation of China (Nos. 51402091, 51601059), the Key Scientific Research Foundation in Henan Province (No. 19B430005), the Special Scientific Research Foundation in Henan Normal University (No. 20180543), and the National University Student Innovation Program (No. 20160098).

References

  1. 1.
    G.H. Haertling, J. Am. Ceram. Soc. 1999, 797.Google Scholar
  2. 2.
    Z. Wei, Y. Huang, T. Taiju, N. Yosuke, and J. Zeng, Ceram. Int. 38, 4 (2012).Google Scholar
  3. 3.
    W. Liu and X. Ren, Phys. Rev. Lett. 103, 25 (2009).Google Scholar
  4. 4.
    D. Lin, D. Xiao, J. Zhu, and P. Yu, Appl. Phys. Lett. 88, 6 (2006).Google Scholar
  5. 5.
    D. Hennings, A. Schnell, and G. Simon, J. Am. Ceram. Soc. 65, 11 (1982).CrossRefGoogle Scholar
  6. 6.
    J.F. Scott, Annu. Rev. Mater. Sci. 28, 28 (1998).CrossRefGoogle Scholar
  7. 7.
    H.I. Hsiang, C.S. Hsi, C.C. Huang, and S.L. Fu, J. Alloys Compd. 459, 1 (2008).CrossRefGoogle Scholar
  8. 8.
    H. Abdelkefi, H. Khemakhem, A. Simon, and J. Darriet, J. Alloys Compd. 463, 1 (2008).CrossRefGoogle Scholar
  9. 9.
    Z.G. Hu, Y.W. Li, M. Zhu, Z.Q. Zhu, and J.H. Chu, Phys. Lett. A 372, 24 (2008).Google Scholar
  10. 10.
    Y. Shi, H. Liu, H. Hao, M. Cao, Z. Yao, Z. Song, G. Li, W. Tang, and J. Xie, Ferroelectrics 487, 1 (2015).CrossRefGoogle Scholar
  11. 11.
    V.V. Shvartsman, W. Kleemann, J. Dec, Z.K. Xu, and S.G. Lu, J. Appl. Phys. 99, 12 (2006).CrossRefGoogle Scholar
  12. 12.
    Z. Yu, C. Ang, R. Guo, and A.S. Bhalla, J. Appl. Phys. 92, 5 (2002).Google Scholar
  13. 13.
    Z. Sun, L. Li, J. Li, H. Zheng, and W. Luo, Ceram. Int. 42, 9 (2016).CrossRefGoogle Scholar
  14. 14.
    S. Ye, J. Fuh, and L. Lu, J. Alloys Compd. 541, 22 (2012).Google Scholar
  15. 15.
    X.G. Tang, Q.X. Liu, J. Wang, and H.L.W. Chan, Appl. Phys. A 96, 4 (2009).Google Scholar
  16. 16.
    M.R. Panigrahi and S. Panigrahi, Physica B 405, 11 (2010).Google Scholar
  17. 17.
    A. Shukla, R.N.P. Choudhary, and A.K. Thakur, J. Phys. Chem. Solids 70, 11 (2009).CrossRefGoogle Scholar
  18. 18.
    T. Wu, Y. Pu, and K. Chen, Ceram. Int. 39, 6 (2013).Google Scholar
  19. 19.
    P. Wang, Y. Li, and Y. Lu, J. Eur. Ceram. Soc. 31, 11 (2011).Google Scholar
  20. 20.
    V.S. Puli, D.B. Chrisey, M. Tomozawa, G.L. Sharma, J.F. Scott, and R.S. Katiyar, J. Mater. Sci. 48, 5 (2013).CrossRefGoogle Scholar
  21. 21.
    D. Segal, Chemical Synthesis of Advanced Ceramic Materials Cambridge: Cambridge University Press, (1989).Google Scholar
  22. 22.
    D. Wang, H. Jin, J. Yuan, B. Wen, Q. Zhao, D. Zhang, and M. Cao, Chin. Phys. Lett. 27, 4 (2010).Google Scholar
  23. 23.
    X. Yang, Z. Cheng, J. Cheng, D. Wang, F. Shi, G. Zheng, H. Liua, D. Zhang, and M. Cao, Integr. Ferroelectrics 176, 1 (2016).CrossRefGoogle Scholar
  24. 24.
    D. Wang, M. Wang, F. Liu, C. Yan, Q. Zhao, H. Sun, H. Jin, and M. Cao, Ceram. Int. 41, 7 (2015).Google Scholar
  25. 25.
    Z. Li, Z. Hou, W. Song, X. Liu, D. Wang, J. Tang, and X. Shao, Mater. Lett. 175 (2016).Google Scholar
  26. 26.
    J.P. Praveen, K. Kumar, A.R. James, T. Karthik, S. Asthana, and D. Das, Curr. Appl. Phys. 14, 3 (2014).CrossRefGoogle Scholar
  27. 27.
    J.P. Praveen, T. Karthik, A.R. James, E. Chandrakala, S. Asthana, and D. Das, J. Eur. Ceram. Soc. 35, 6 (2015).CrossRefGoogle Scholar
  28. 28.
    Z. Wang, J. Wang, X. Chao, L. Wei, B. Yang, D. Wang, and Z. Yang, J. Mater. Sci. Mater. Electron. 27, 5 (2016).CrossRefGoogle Scholar
  29. 29.
    E. Chandrakala, J.P. Praveen, B.K. Hazra, and D. Das, Ceram. Int. 42, 4 (2016).CrossRefGoogle Scholar
  30. 30.
    X. Wang, B. Zhang, G. Shen, L. Sun, Y. Hu, L. Shi, X. Wang, C. Jie, and L. Zhang, Ceram. Int. 43, 16 (2017).Google Scholar
  31. 31.
    X. Wang, B. Zhang, L. Xu, X. Wang, Y. Hu, G. Shen, L. Sun, Sci. Rep. 7, (2017).Google Scholar
  32. 32.
    X. Wang, B. Zhang, L. Sun, W. Qiao, Y. Hao, Y. Hu, X. Wang, J. Alloys Compd. 745, (2018).Google Scholar
  33. 33.
    J. Khemprasit and B. Khumpaitool, Ceram. Int. 41, 1 (2015).CrossRefGoogle Scholar
  34. 34.
    L.N. Gao, S.N. Song, J.W. Zhai, X. Yao, and Z.K. Xu, J. Cryst. Growth 310, 6 (2008).Google Scholar
  35. 35.
    M. Nath and A. Roy, J. Mater. Sci. Mater. Electron. 26, 6 (2015).CrossRefGoogle Scholar
  36. 36.
    B.C. Luo, D.Y. Wang, M.M. Duan, and S. Li, Appl. Surf. Sci. 270, 14 (2013).CrossRefGoogle Scholar
  37. 37.
    N. Li, W.L. Li, L.D. Wang, D. Xu, Q.G. Chi, and W.D. Fei, J. Alloys Compd. 552, 10 (2013).CrossRefGoogle Scholar
  38. 38.
    S.B. Li, C.B. Wang, L. Li, Q. Shen, L.M. Zhang, J. Alloys Compd. 730, (2018).Google Scholar
  39. 39.
    C.R. Zhou, X.Y. Liu, W.Z. Li, and C.L. Yuan, Solid State Commun. 149, 11 (2009).Google Scholar
  40. 40.
    P. Goel, K.L. Yadav, and A.R. James, J. Phys. D Appl. Phys. 37, 22 (2004).CrossRefGoogle Scholar
  41. 41.
    X. Wang, P. Jia, X. Wang, B. Zhang, L. Sun, and Q. Liu, J. Mater. Sci. Mater. Electron. 27, 11 (2016).CrossRefGoogle Scholar
  42. 42.
    X. Wang, P. Jia, L. Sun, B. Zhang, X. Wang, Y. Hu, J. Shang, and Y. Zhang, J. Mater. Sci. Mater. Electron. 29, 1 (2018).Google Scholar
  43. 43.
    D. Wang, D. Zhou, K. Song, A. Feteira, C. Randall, and I. Reaney, Adv. Electron. Mater. 1900025 (2019).CrossRefGoogle Scholar
  44. 44.
    P.Y. Foeller, J.S. Dean, I.M. Reaney, and D.C. Sinclair, Appl. Phys. Lett. 109, 8 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • X. W. Wang
    • 1
    Email author
  • B. H. Zhang
    • 1
    • 2
  • G. Feng
    • 1
  • L. Y. Sun
    • 1
  • Y. C. Shi
    • 1
  • Y. C. Hu
    • 1
  • J. Shang
    • 1
  • S. Y. Shang
    • 1
  • S. Q. Yin
    • 1
  • X. E. Wang
    • 1
  1. 1.Laboratory of Functional Materials, College of Physics and Materials ScienceHenan Normal University, and Henan Key Laboratory of Photovoltaic MaterialsXinxiangPeople’s Republic of China
  2. 2.Laboratory of Dielectric Materials, School of Materials Science and EngineeringZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations