Preparation and Thermoelectric Properties of Famatinite Cu3SbS4

  • Go-Eun Lee
  • Ji-Hee Pi
  • Il-Ho KimEmail author
Topical Collection: International Conference on Thermoelectrics 2019
Part of the following topical collections:
  1. International Conference on Thermoelectrics 2019


Famatinite Cu3SbS4 is considered to be a promising p-type thermoelectric material that consists of earth-abundant and nontoxic elements. In this study, this material was prepared by using mechanical alloying (MA) as a solid-state route and was consolidated using hot pressing (HP). The effects of MA–HP conditions on the phase synthesis (transformation) and thermoelectric properties were examined. Thermogravimetric and differential scanning calorimetric analyses confirmed that severe mass loss and endothermic reactions occurred at temperatures above approximately 750 K. This was possibly due to the melting of famatinite and the volatilization of the constituent elements. All the specimens exhibited p-type conduction and nondegenerate semiconductor characteristics. It was determined that the electrical and thermal conductivities decreased with an increase in the HP temperature, while the Seebeck coefficient increased. The thermal conductivity was lower than 0.74 Wm−1 K−1 at 623 K, and there was a small contribution of the electronic thermal conductivity to the thermal conductivity due to the intrinsically low electrical conductivity. The dimensionless figure of merit increased with increasing temperature, and the highest value was 0.14 at 623 K.


Thermoelectric famatinite mechanical alloying hot pressing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study was supported by the Industrial Core Technology Development Program funded by the Ministry of Trade, Industry and Energy (grant no. 10083640), and by the Basic Science Research Capacity Enhancement Project (National Research Facilities and Equipment Center) through the Korea Basic Science Institute funded by the Ministry of Education (grant no. 2019R1A6C1010047).


  1. 1.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).CrossRefGoogle Scholar
  2. 2.
    A. Suzumura, M. Watanabe, N. Nagasako, and R. Asahi, J. Electron. Mater. 43, 2356 (2014).CrossRefGoogle Scholar
  3. 3.
    K. Chen, C. Di Paola, B. Du, R. Zhang, S. Laricchia, N. Bonini, C. Weber, I. Abrahams, H. Yan, and M. Reece, J. Mater. Chem. C 6, 8546 (2018).CrossRefGoogle Scholar
  4. 4.
    R. Chetty, A. Bali, and R.C. Mallik, J. Mater. Chem. C 3, 12364 (2015).CrossRefGoogle Scholar
  5. 5.
    S.Y. Kim, S.G. Kwak, J.H. Pi, G.E. Lee, and I.H. Kim, J. Electron. Mater. 48, 1857 (2019).CrossRefGoogle Scholar
  6. 6.
    B. Du, R. Zhang, M. Liu, K. Chen, H. Zhang, and M.J. Reece, J. Mater. Chem. C 7, 394 (2019).CrossRefGoogle Scholar
  7. 7.
    V.K. Gudelli, V. Kanchana, G. Vaitheeswaran, A. Svane, and N.E. Christensen, J. Appl. Phys. 114, 223707 (2013).CrossRefGoogle Scholar
  8. 8.
    B. Du, R. Zhang, K. Chen, A. Mahajan, and M.J. Reece, J. Mater. Chem. A 5, 3249 (2017).CrossRefGoogle Scholar
  9. 9.
    K. Chen, Synthesis and Thermoelectric Properties of Cu-Sb-S Compounds, Ph.D. Thesis (UK: Queen Mary University of London, 2016).Google Scholar
  10. 10.
    J. Zhang, R. Liu, N. Cheng, Y. Zhang, J. Yang, C. Uher, X. Shi, L. Chen, and W. Zhang, Adv. Mater. 26, 3848 (2014).CrossRefGoogle Scholar
  11. 11.
    K. Chen, B. Du, N. Bonini, C. Weber, H. Yan, and M.J. Reece, J. Phys. Chem. C 120, 27135 (2016).CrossRefGoogle Scholar
  12. 12.
    M. Fleischer and U.S. Geol, Surv. Circ. 285, 7 (1953).Google Scholar
  13. 13.
    E.J. Skoug, J.D. Cain, D.T. Morelli, M. Kirkham, P. Majsztrik, and E. Lara-Curzio, J. Appl. Phys. 110, 1 (2011).CrossRefGoogle Scholar
  14. 14.
    K. Suekuni, K. Tsuruta, T. Ariga, and M. Koyano, Appl. Phys. Exp. 5, 2 (2012).CrossRefGoogle Scholar
  15. 15.
    X. Lu, D.T. Morelli, Y. Xia, F. Zhou, V. Ozolins, H. Chi, X. Zhou, and C. Uher, Adv. Energy Mater. 3, 342 (2013).CrossRefGoogle Scholar
  16. 16.
    B.A. Cook, B.J. Beaudry, J.L. Harringa, and W.J. Barnett, Proceedings of 9th International Conference Thermoelectrics, Pasadena (1990), edited by C.B. Vining, p. 234.Google Scholar
  17. 17.
    A. Yanagitani, S. Nishikawa, Y. Tanaka, Y. Kawai, S. Hayashimoto, N. Itoh, and T. Kitaoka, Proceedings of 12th International Conference Thermoelectrics, Yokohama (1993), edited by K. Matsuura, p. 277.Google Scholar
  18. 18.
    S. Wojciechowski, J. Mater. Process. Technol. 106, 230 (2000).CrossRefGoogle Scholar
  19. 19.
    B.J. Skinner, F.D. Luce, and E. Makovicky, Econ. Geol. 67, 924 (1972).CrossRefGoogle Scholar
  20. 20.
    J.H. Wernick and K.E. Benson, J. Phys. Chem. Solids 3, 157 (1957).CrossRefGoogle Scholar
  21. 21.
    O. Madelung, Semiconductors: Data Handbook, 3rd ed. (Berlin: Springer, 2004).CrossRefGoogle Scholar
  22. 22.
    T.R. Wei, Y. Qin, T. Deng, Q. Song, B. Jiang, R. Liu, P. Qiu, X. Shi, and L. Chen, Sci. China Mater. 62, 8 (2019).CrossRefGoogle Scholar
  23. 23.
    Y. Goto, Y. Sakai, Y. Kamihara, and M. Matoba, J. Phys. Soc. Jpn. 84, 044706 (2015).CrossRefGoogle Scholar
  24. 24.
    H.S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, and G.J. Snyder, APL Mater. 3, 041506 (2015).CrossRefGoogle Scholar
  25. 25.
    C. Dames and G. Chen, Handbook of Thermoelectrics, ed. D.M. Rowe (Boca Raton: CRC Press, 1995), Google Scholar
  26. 26.
    M.G. Holland, Phys. Rev. 132, 2461 (1963).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringKorea National University of TransportationChungjuKorea

Personalised recommendations