Advertisement

Dual-Band Microwave Sensor for Investigation of Liquid Impurity Concentration Using a Metamaterial Complementary Split-Ring Resonator

  • Yogita Khanna
  • Y. K. AwasthiEmail author
Article
  • 17 Downloads

Abstract

In this article, a dual-band microwave sensor using a complementary split-ring resonator (CSRR) is presented that determines the concentration of any liquid bi-mixture like water in ethanol and urea in whole milk. The proposed sensor is unique as it is designed, simulated and fabricated using a single-metamaterial cell structure to operate at dual frequency, i.e. 2.45 GHz and 5.8 GHz using an industrial, scientific and medical (ISM) band. The sensor is fabricated on FR4 substrate using a typical photolithography technique, and simulated results are in agreement with the measured results. Investigation of the sensing mechanism for impurity concentration (i.e. water in ethanol or urea in milk) is performed by placing the sample mixture in the pipette placed across from the sensor. As microwave sensors respond to the change in the dielectric constant of the nearby materials, when the liquid mixture concentration varies, there is shifting in the resonant frequency at which the sensor is designed. The proposed sensor is unique due to dual-band resonance, reusability, compactness (12 mm × 20 mm), low cost, noninvasiveness, nondestructiveness, and a user-friendly approach.

Keywords

Bi-mixture liquid CSRR dual-band resonator dielectric characterization sample under test 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    M. Chakraborty, S. Member, and K. Biswas, IEEE Sens. J. 18, 2395 (2018).CrossRefGoogle Scholar
  2. 2.
    Pallavi Gupta, Anwar Sadat, and M.J.R. Khan, IEEE Sens. J. 14, 2930 (2014).CrossRefGoogle Scholar
  3. 3.
    Z. Akhter and M.J. Akhtar, IEEE Trans. Instrum. Meas. 65, 2394 (2016).CrossRefGoogle Scholar
  4. 4.
    S.P. Chakyar, S.K. Simon, C. Bindu, J. Andrews, V.P. Joseph, S.P. Chakyar, S.K. Simon, C. Bindu, J. Andrews, and V.P. Joseph, J. Appl. Phys. 121, 054101 (2017).CrossRefGoogle Scholar
  5. 5.
    C. Lee and C. Yang, IEEE Sens. J. 14, 695 (2014).CrossRefGoogle Scholar
  6. 6.
    M.A.H. Ansari, A.K. Jha, Z. Akhter, and M. Jaleel Akhtar, IEEE Sens. J. 18, 6596 (2018).CrossRefGoogle Scholar
  7. 7.
    E.L. Chuma, S. Member, Y. Iano, G. Fontgalland, S. Member, L. Lorenzo, and B. Roger, IEEE Sens. J. 18, 9978 (2018).CrossRefGoogle Scholar
  8. 8.
    M.A.H. Ansari, A.K. Jha, and M.J. Akhtar, IEEE Sens. J. 15, 7181 (2015).CrossRefGoogle Scholar
  9. 9.
    L. Benkhaoua, S. Mouissat, M.T. Benhabiles, Y. Yakhlef, M.L. Riabi, International Microwave Bio Conference (IMBIOC) (2017), pp. 1–3.Google Scholar
  10. 10.
    D.-K. Lee, J.-H. Kang, J. Kwon, J.-S. Lee, S. Lee, D.H. Woo, J.H. Kim, C.-S. Song, Q.-H. Park, and M. Seo, Sci. Rep. 7, 8146 (2017).CrossRefGoogle Scholar
  11. 11.
    S. Wang, L. Xia, H. Mao, X. Jiang, S. Yan, H. Wang, D. Wei, H. Cui, and C. Du, IEEE Photonics Technol. Lett. 28, 986 (2016).Google Scholar
  12. 12.
    K. Zhao, Y. Liu, and Q. Zhang, J. Mol. Liq. 273, 37 (2019).CrossRefGoogle Scholar
  13. 13.
    S.N. Jha, K. Narsaiah, A.L. Basediya, R. Sharma, P. Jaiswal, R. Kumar, and R. Bhardwaj, J. Food Sci. Technol. 48, 387 (2011).CrossRefGoogle Scholar
  14. 14.
    H. Zhou, D. Hu, C. Yang, C. Chen, J. Ji, M. Chen, Y. Chen, Y. Yang, and X. Mu, Sci. Rep. 8, 14801 (2018).CrossRefGoogle Scholar
  15. 15.
    Nikolina Jankovic and Vasa Radonic, Sensors (Basel) 17, 2713 (2017).CrossRefGoogle Scholar
  16. 16.
    M.S. Boybay and O.M. Ramahi, IEEE Trans. Instrum. Meas. 61, 3039 (2012).CrossRefGoogle Scholar
  17. 17.
    S. Ramya and I. Srinivasa Rao, Prog. Electromagn. Res. 50, 23 (2016).CrossRefGoogle Scholar
  18. 18.
    A. Ebrahimi, W. Withayachumnankul, S. Al-Sarawi, and D. Abbott, IEEE Sens. J. 14, 1345 (2014).CrossRefGoogle Scholar
  19. 19.
    W. Withayachumnankul, K. Jaruwongrungsee, A. Tuantranont, C. Fumeaux, and D. Abbott, Sens. Actuators A Phys. 189, 233 (2013).CrossRefGoogle Scholar
  20. 20.
    G. Gennarelli, S. Romeo, M.R. Scarfì, and F. Soldovieri, IEEE Sens. J. 13, 1857 (2013).CrossRefGoogle Scholar
  21. 21.
    V. Veselago, L.S. Braginsky, V. Shklover, and C. Hafner, J. Comput. Theor. Nanosci. 3, 189 (2006).CrossRefGoogle Scholar
  22. 22.
    J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, IEEE Trans. Microw. Theory Tech. 47, 2075 (1999).CrossRefGoogle Scholar
  23. 23.
    F. Falcone, T. Lopetegi, and J.D. Baena, IEEE Microw. Wirel. Compon. Lett. 14, 280 (2004).CrossRefGoogle Scholar
  24. 24.
    F. Falcone, T. Lopetegi, and M.A.G. Laso, Phys. Rev. Lett. 93, 197401 (2004).CrossRefGoogle Scholar
  25. 25.
    J. Bonache, I. Gil, J. García-García, and F. Martín, IEEE Trans. Microw. Theory 54, 265 (2006).CrossRefGoogle Scholar
  26. 26.
    Y.K. Awasthi, H. Singh, M. Sharma, S. Kumari, and A.K. Verma, J. Eng. 9, 512 (2017).Google Scholar
  27. 27.
    J. Bonache, M. Gil, and I. Gil, IEEE Microw. Wirel. Compon. Lett. 16, 543 (2006).CrossRefGoogle Scholar
  28. 28.
    T. Azad and S. Ahmed, Int. J. Food Contam. 3, 1 (2016).CrossRefGoogle Scholar
  29. 29.
    J.Z. Bao, M.L. Swicord, and C.C. Davis, J. Chem. Phys. 104, 4441 (1996).CrossRefGoogle Scholar
  30. 30.
    G. Durante, W. Becari, F.A.S. Lima, and H.E.M. Peres, IEEE Sens. J. 16, 861 (2016).CrossRefGoogle Scholar
  31. 31.
    D. Agranovicha, I. Renhartb, P.B. Ishaia, G. Katzc, D. Bezmanc, and Y. Feldman, Elsevier Food Control 63, 195 (2016).CrossRefGoogle Scholar
  32. 32.
    O. Akgol, E. Unal, M. Bagbanci, M. Karaaslan, U.K. Sevim, M. Ozturk, and A. Bhadauria, J. Electron. Mater. 48, 2469 (2019).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringManav Rachna UniversityFaridabadIndia
  2. 2.Department of Electronics and Communication EngineeringManav Rachna International Institute of Research and StudiesFaridabadIndia

Personalised recommendations