Advertisement

Realization of Improved Visible Light-Mediated Photocatalytic Activity of Al2O3 Nanoparticles Through Cobalt Doping

  • S. Anbarasu
  • S. Ilangovan
  • K. Usharani
  • A. Prabhavathi
  • M. Suganya
  • M. Karthika
  • C. Kayathiri
  • S. Balamurugan
  • A. R. BaluEmail author
Article
  • 2 Downloads

Abstract

Improved photocatalytic activity through cobalt (Co) doping has been reported for Al2O3 nanoparticles in this paper. Undoped and Co-doped Al2O3 nanoparticles have been synthesized via a precipitation method. Pure and Al2O3 nanoparticles exhibit a monoclinic crystal structure. The optical bandgap decreases from 3.80 eV to 3.64 eV with Co doping. Due to the red shift in the bandgap, the recombination rate of photo-induced electrons and holes decreases in the doped catalysts which improved their efficiencies against the degradation of rhodamine dye. A remarkable degradation efficiency of 95.45% is evinced for the 4 wt.% Co-doped Al2O3 catalyst and this was well acknowledged from its decreased crystallite size, decreased bandgap and increased photosensitivity values. An increased degradation rate constant value of 0.96649 min−1 observed for the 4 wt.% Co-doped Al2O3 catalyst also confirms this. The results obtained indicate that the Co-doped Al2O3 nanoparticles are potential candidates as visible light catalysts with remarkable degradation efficiencies against toxic dyes. Also, the realization of ferromagnetism confirms the regenerable and reusable quality of the Co-doped Al2O3 catalysts.

Keywords

Doping red shift catalyst degradation reusable 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

SAIF, Cochin is very much thanked for the TEM images.

References

  1. 1.
    A. Umar, M.S. Akhtar, A. Al-Hajry, M.S. Al-Assiri, and N.Y. Almehbad, Mater. Res. Bull. 47, 2407 (2012).CrossRefGoogle Scholar
  2. 2.
    N. Manjula, G. Selvan, and A.R. Balu, J. Mater. Sci.: Mater. Electron. 29, 3657 (2017).Google Scholar
  3. 3.
    K. Nagaveni, G. Sivalingam, M.S. Hegde, and G. Madras, Appl. Catal. B. Environ 48, 83 (2004).CrossRefGoogle Scholar
  4. 4.
    J. Wu, H.Y. Zhang, L. Wei, X. Liu, and B. Xu, J. Coll. Inter. Sci. 324, 167 (2008).CrossRefGoogle Scholar
  5. 5.
    E.S. Agorku, A.T. Kuvarega, B.B. Mamba, A.C. Pandey, and A.K. Mishra, J. Rore Earth Met. 33, 198 (2015).Google Scholar
  6. 6.
    L. Gao, Y. Li, Q. Li, Z. Song, and F. Ma, Nanotechnol. 28, 215201 (2017).CrossRefGoogle Scholar
  7. 7.
    M. Farahmandjou and S. Motaghi, Opt. Commun. 441, 1 (2019).CrossRefGoogle Scholar
  8. 8.
    Q. Yuan, A.X. Yin, C. Luo, L.D. Sun, Y.W. Zhang, W.T. Duan, H.C. Liu, and C.H. Yan, J. Am. Chem. Soc. 130, 3465 (2008).CrossRefGoogle Scholar
  9. 9.
    R. Doremus, Alumina, in: J. Shackelford, R. Doremus (Eds), (Springer US, 2008), pp. 1–26.Google Scholar
  10. 10.
    M. Vahtrus, M. Umalas, B. Polyakov, L. Dorogin, R. Saar, M. Tamme, K. Saal, R. Lohmus, and S. Vlassov, Mater. Charact. 107, 119 (2015).CrossRefGoogle Scholar
  11. 11.
    A. Adak, M. Bandyopadhyay, and A. Pal, J. Environ. Sci. Health 40, 167 (2005).CrossRefGoogle Scholar
  12. 12.
    M.C. Patterson, N.D. Keilbart, L.W. Kiruri, C.A. Thibodeaux, S. Lomnicki, R.L. Kurtz, E.D. Poliakoft, B. Dellinger, and P.T. Springer, Chem. Phys. 422, 277 (2013).CrossRefGoogle Scholar
  13. 13.
    E. Mohammadifar, F. Shemirani, B. Majidi, and M. Ezoddin, Desal. Water. Treat. 54, 758 (2015).CrossRefGoogle Scholar
  14. 14.
    L. El Mir, A. Amlouk, and C. Barthou, J. Phys. Chem. Sol. 67, 2395 (2006).CrossRefGoogle Scholar
  15. 15.
    S. Balamurugan, A.R. Balu, V. Narasimman, G. Selvan, K. Usharani, J. Srivind, M. Suganya, N. Manjula, C. Rajashree, and V.S. Nagarethinam, Mater. Res. Exp. 6, 015022 (2019).CrossRefGoogle Scholar
  16. 16.
    H. Balard, A. Mansour, E. Papier, and P. Pichat, J. Chem. Phys. 82, 1051 (1985).CrossRefGoogle Scholar
  17. 17.
    S. Anbarasu, S. Ilangovan, V.S. Nagarethinam, J. Srivind, S. Balamurugan, M. Suganya, and A.R. Balu, Nano-Struct. Nano-Objects 17, 67 (2019).CrossRefGoogle Scholar
  18. 18.
    S. Ravishankar, A.R. Balu, S. Balamurugan, K. Usharani, D. Prabha, M. Suganya, J. Srivind, and V.S. Nagarethinam, J. Mater. Sci.: Mater. Electron. 29, 6051 (2018).Google Scholar
  19. 19.
    A. Sutka, T. Kaambre, R. Parna, I. Juhnevica, M. Maiorov, U. Joost, and V. Kisand, Sol. State Sci. 56, 54 (2016).CrossRefGoogle Scholar
  20. 20.
    Y. Miao, X. Wang, W. Wang, C. Zhou, G. Feng, J. Cai, and R. Zhang, J. Energy Chem. 26, 549 (2017).CrossRefGoogle Scholar
  21. 21.
    Z. Nasir, M. Shakir, R. Wahab, M. Shoeb, P. Alam, R.H. Khan, and M. Mobin, Int. J. Biol. Macromol. 94, 554 (2017).CrossRefGoogle Scholar
  22. 22.
    R. Swapna and M.C. Santhosh kumar, J. Phys. Chem. Sol. 74, 418 (2013).CrossRefGoogle Scholar
  23. 23.
    B.D. Culity, Elements of x-ray diffraction, 2nd ed. (MA: Addison Wesley, 1978), pp. 102–103.Google Scholar
  24. 24.
    S. Swanboon, P. Amorpitoksuk, and A. Suklorat, Ceram. Int. 37, 1359 (2011).CrossRefGoogle Scholar
  25. 25.
    A. Goktas, I.H. Mutlu, and Y. Yamada, Superlattices Microstruct. 57, 139 (2013).CrossRefGoogle Scholar
  26. 26.
    B.J. Sarkar, A. Bandyopadhyay, J. Mandal, A.K. Deb, and P.K. Chakrabarti, J. Alloys Compnd. 656, 339 (2016).CrossRefGoogle Scholar
  27. 27.
    J.M.D. Coey, M. Venkatesn, and C.B. Fitzzerald, Nat. Mater. 2, 173 (2005).CrossRefGoogle Scholar
  28. 28.
    N.W. Gray and A. Tiwari, J. Appl. Phys. 110, 033903 (2011).CrossRefGoogle Scholar
  29. 29.
    P. Samiyammal, K. Parasuaramn, and A.R. Balu, Superlattices Microstruct. 129, 28 (2019).CrossRefGoogle Scholar
  30. 30.
    J. Srivind, V.S. Nagarethinam, M. Suganya, S. Balamurugan, K. Usharani, and A.R. Balu, Vacuum 163, 373 (2019).CrossRefGoogle Scholar
  31. 31.
    D. Prabha, S. Ilangovan, S. Balamurugan, M. Suganya, S. Anitha, V.S. Nagarethinam, and A.R. Balu, Optik 142, 301 (2017).CrossRefGoogle Scholar
  32. 32.
    J. Srivind, V.S. Nagarethinam, S. Balamurugan, S. Anitha, M. Suganya, D. Prabha, and A.R. Balu, Surf. Interfaces 9, 58 (2017).CrossRefGoogle Scholar
  33. 33.
    F. Liu, X. Shao, J. Wang, S. Yang, H. Li, X. Meng, X. Liu, and M. Wang, J. Alloys Compnd. 551, 327 (2013).CrossRefGoogle Scholar
  34. 34.
    M. Mousavi-Kamazani, Z. Zarghami, and M. Salavati-Muasari, J. Phys. Chem. C 120, 2096 (2016).CrossRefGoogle Scholar
  35. 35.
    K. Laishram, R. Mann, and N. Malhan, Ceram. Int. 38, 1703 (2012).CrossRefGoogle Scholar
  36. 36.
    S. Anitha, M. Suganya, D. Prabha, J. Srivind, S. Balamurugan, and A.R. Balu, Mater. Chem. Phy. 211, 88 (2018).CrossRefGoogle Scholar
  37. 37.
    B. Roya, S. Chakrabartyaq, O. Mondala, M. Palb, and A. Duttaa, Mater. Charact. 70, 1 (2011).CrossRefGoogle Scholar
  38. 38.
    C. Aydin, M.S. Abd El-sadek, K. Zheng, I.S. Yahia., and F. Yakuphanoglu, Opt. Laser Technol. 48, 447 (2013).Google Scholar
  39. 39.
    N. Manjula and A.R. Balu, Optik 130, 464 (2017).CrossRefGoogle Scholar
  40. 40.
    Y.R. Sui, Y. Cao, X.F. Li, Y.G. Yue, B. Yao, X.Y. Li, J.H. Lang, and J.H. Yang, Ceram. Int. 41, 587 (2015).CrossRefGoogle Scholar
  41. 41.
    D. Antosoly, S. Ilangovan, V.S. Nagarethinam, and A.R. Balu, Surf. Eng. 34, 682 (2018).CrossRefGoogle Scholar
  42. 42.
    J.K. Rajput, T.K. Pathak, V. Kumar, M. Kumar, and L.P. Purohit, Surf. Interfaces 6, 11 (2017).CrossRefGoogle Scholar
  43. 43.
    A. Khodadadi, M. Farahmandjou, M. Yaghoubi., and A.R. Amani, 16, 718 (2019).Google Scholar
  44. 44.
    N. Manjula, M. Suganya, D. Prabha, S. Balamurugan, J. Srivind, V.S. Nagarethinam, and A.R. Balu, J. Mater. Sci.: Mater. Electron. 28, 7615 (2017).Google Scholar
  45. 45.
    M. Suganya, A.R. Balu, D. Prabha, S. Anitha, S. Balamurugan, and J. Srivind, J. Mater. Sci.: Mater. Electron. 29, 1065 (2018).Google Scholar
  46. 46.
    R. Nallendran, G. Selvan, and A.R. Balu, J. Mater. Sci.: Mater. Electron. 29, 11384 (2018).Google Scholar
  47. 47.
    D. Prabha, K. Usharani, S. Ilangovan, M. Suganya, S. Balamurugan, J. Srivind, V.S. Nagarethinam, and A.R. Balu, Mater. Technol. 33, 333 (2018).CrossRefGoogle Scholar
  48. 48.
    A.H. Cheshme Khavar, A. Mahjoub, and M. Bayat Rizi, J. Photochem. Photobio. B 175, 37 (2017).CrossRefGoogle Scholar
  49. 49.
    M. Goudarzi, Z. Zarghami, and M.S. Niasari, J. Mater. Sci.: Mater. Electron. 27, 9789 (2016).Google Scholar
  50. 50.
    K. Motevalli, M. Ebadi, and Z. Salehi, J. Mater. Sci.: Mater. Electron. 28, 13024 (2017).Google Scholar
  51. 51.
    M. Suganya, S. Anitha, D. Prabha, S. Balamurugan, J. Srivind, and A.R. Balu, Mater. Technol. 33, 214 (2018).CrossRefGoogle Scholar
  52. 52.
    M. Dhinam, M. Tripathi, and S. Singhal, Mater. Chem. Phys. 202, 40 (2017).CrossRefGoogle Scholar
  53. 53.
    L.M. Fang, X.T. Zu, Z.J. Li, S. Zhu, C.M. Liu, and L.M. Wang, J. Mater. Electron. 19, 868 (2008).CrossRefGoogle Scholar
  54. 54.
    M.G. Nair, M. Nirmala, K. Rekha, and A. Anukaliani, Mater. Lett. 65, 1797 (2011).CrossRefGoogle Scholar
  55. 55.
    M. Huang, C. Xu, Z. Wu, Y. Huang, J. Lin, and J. Wu, Dyes Pigment 77, 327 (2008).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.PG and Research Department of PhysicsThiru Vi Ka Govt. CollegeThiruvarurIndia
  2. 2.PG and Research Department of PhysicsAVVM Sri Pushpam CollegePoondiIndia
  3. 3.PG Department of PhysicsSTET College for WomenMannarkudiIndia
  4. 4.PG Department of PhysicsBon Secours College for WomenThanjavurIndia

Personalised recommendations