A Density Functional Study on the Sensitivity of Small ZnO Nanoclusters to Sulfamethazine Considering Semilocal and Nonlocal Functionals

  • M. YeganehEmail author
  • P. S. Maddahi
  • F. Badieian Baghsiyahi


In this study, the possible application of small ZnO nanoclusters in the development of biosensors was investigated by density functional theory. Sulfamethazine is an antibiotic compound with an extensive range of prophylactic and therapeutic applications in animal husbandry. Because of the environmental risks associated with the overconsumption of antibiotics, the development of precise and selective detection methods is imperative. In this regard, the interaction of sulfamethazine and ZnO nanoclusters was investigated utilizing the semilocal functional of Perdew, Burke, and Ernzerhof and nonlocal functional developed by Vydrov and Voorhis. The results showed that the antibiotic can be adsorbed on ZnO nanoclusters. By considering van der Waals interactions, an increase was observed in adsorption energy when compared with the semilocal functional. Inclusion of van der Waals forces, however, did not alter the spatial configuration of the adsorbed molecule. The imaginary part of the dielectric function of ZnO nanoclusters was reduced upon antibiotic adsorption, which became more pronounced in the case of larger ZnO nanoclusters.


Adsorption energy ZnO nanocluster antibiotic GGA vdW dielectric function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Supplementary material

11664_2019_7757_MOESM1_ESM.pdf (389 kb)
Supplementary material 1 (PDF 388 kb)


  1. 1.
    J. Popp, K. Peto, and J. Nagy, Agron Sustain. Dev. 33, 243 (2013).CrossRefGoogle Scholar
  2. 2.
    M. Aziz and S. Karboune, Crit. Rev. Food Sci. Nutr. 58, 1 (2016).CrossRefGoogle Scholar
  3. 3.
    N.A. Mungroo and S. Neethirajan, Biosensors 4, 472 (2014).CrossRefGoogle Scholar
  4. 4.
    K.-W. Chen, G.-L. Chen, and C.-C. Hong, J. Electrochem. Soc. 163, B200 (2016).CrossRefGoogle Scholar
  5. 5.
    A. Kling, C. Chatelle, L. Armbrecht, E. Qelibari, J. Kieninger, C. Dincer, W. Weber, and G. Urban, Anal. Chem. 88, 10036 (2016).CrossRefGoogle Scholar
  6. 6.
    L. Lan, Y. Yao, J. Ping, and Y. Ying, Biosens. Bioelectron. 91, 504 (2017).CrossRefGoogle Scholar
  7. 7.
    T. Chen, G. Cheng, S. Ahmed, Y. Wang, X. Wang, H. Hao, and Z. Yuan, Talanta 175, 435 (2017).CrossRefGoogle Scholar
  8. 8.
    H. Yockell-Lelièvre, N. Bukar, J.L. Toulouse, J.N. Pelletier, and J.-F. Masson, Analyst 141, 697 (2016).CrossRefGoogle Scholar
  9. 9.
    K.S. McKeating, A. Aubé, and J.-F. Masson, Analyst 141, 429 (2016).CrossRefGoogle Scholar
  10. 10.
    M. Chen, T.P. Straatsma, Z. Fang, and D.A. Dixon, J. Phys. Chem. C 120, 20400 (2016).CrossRefGoogle Scholar
  11. 11.
    L.M. Kukreja, A. Rohlfing, P. Misra, F. Hillenkamp, and K. Dreisewerd, Appl. Phys. A: Mater. Sci. Process. 78, 641 (2004).CrossRefGoogle Scholar
  12. 12.
    A. Dmytruk, I. Dmitruk, I. Blonskyy, R. Belosludov, Y. Kawazoe, and A. Kasuya, Microelectron. J. 40, 218 (2009).CrossRefGoogle Scholar
  13. 13.
    S. Zhang, Y. Zhang, S. Huang, H. Liu, P. Wang, and H. Tian, J. Mater. Chem. 21, 16905 (2011).CrossRefGoogle Scholar
  14. 14.
    M. Zhao, Y. Xia, Z. Tan, X. Liu, and L. Mei, Phys. Lett. A 372, 39 (2007).CrossRefGoogle Scholar
  15. 15.
    A.C. Reber, S.N. Khanna, J.S. Hunjan, and M.R. Beltran, Eur. Phys. J. D 43, 221 (2007).CrossRefGoogle Scholar
  16. 16.
    B.L. Wang, X.Q. Wang, G.B. Chen, S. Nagase, and J.J. Zhao, J. Chem. Phys. 128, 144710 (2008).CrossRefGoogle Scholar
  17. 17.
    B. Wang, S. Nagase, J. Zhao, and G. Wang, J. Phys. Chem. C 111, 4956 (2007).CrossRefGoogle Scholar
  18. 18.
    J.M. Matxain, J.M. Mercero, J.E. Fowler, and J.M. Ugalde, J. Am. Chem. Soc. 125, 9494 (2003).CrossRefGoogle Scholar
  19. 19.
    Z. Zhao, W. Lei, X. Zhang, B. Wang, and H. Jiang, Sensors 10, 1216 (2010).CrossRefGoogle Scholar
  20. 20.
    Z.R.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, and M.J. Mcdermott, J. Am. Chem. Soc. 124, 12954 (2002).CrossRefGoogle Scholar
  21. 21.
    P.S. Maddahi, N. Shahtahmassebi, M. Rezaee Roknabadi, and F. Moosavi, Phys. Lett. A 380, 2090 (2016).CrossRefGoogle Scholar
  22. 22.
    P.S. Maddahi, N. Shahtahmassebi, M. Rezaee Roknabadi, and F. Moosavi, Comput. Theor. Chem. 1086, 36 (2016).CrossRefGoogle Scholar
  23. 23.
    F. Buonocore, C. Arcangeli, F. Gala, G. Zollo, and M. Celino, J. Phys. Chem. B 119, 11791 (2015).CrossRefGoogle Scholar
  24. 24.
    S. Saha and P. Sarkar, Phys. Chem. Chem. Phys. 16, 15355 (2014).CrossRefGoogle Scholar
  25. 25.
    F.F. Monteiro, D.L. Azevedo, E.C. da Silva, L.A. Ribeiro, and A.L. de Almeida Fonseca, Chem. Phys. Lett. 636, 62 (2015).CrossRefGoogle Scholar
  26. 26.
    P.S. Maddahi, M. Yeganeh, and F. Badieian Baghsiyahi, Mater. Chem. Phys. 237, 121857 (2019).CrossRefGoogle Scholar
  27. 27.
    J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, and P. Ordejon, J. Phys. Condens. Matter 14, 2745 (2001).CrossRefGoogle Scholar
  28. 28.
    A. Lozano, B. Escribano, E. Akhmatskaya, and J. Carrasco, Phys. Chem. Chem. Phys. 19, 10133 (2017).CrossRefGoogle Scholar
  29. 29.
    K. Berland, V.R. Cooper, K. Lee, E. Schroder, T. Thonhauser, P. Hyldgaard, and B.I. Lundqvist, Rep. Prog. Phys. 78, 066501 (2015).CrossRefGoogle Scholar
  30. 30.
    O.A. Vydrov and T.V. Voorhis, J. Chem. Phys. 133, 244103 (2010).CrossRefGoogle Scholar
  31. 31.
    O.A. Vydrov and T.V. Voorhis, J. Chem. Theory Comput. 8, 1929 (2012).CrossRefGoogle Scholar
  32. 32.
    F. Tran and J. Hutter, J. Chem. Phys. 138, 204103 (2013).CrossRefGoogle Scholar
  33. 33.
    W. Hujo and S. Grimme, J. Chem. Theory Comput. 7, 3866 (2011).CrossRefGoogle Scholar
  34. 34.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
  35. 35.
    N. Troullier and J.L. Martins, Phys. Rev. B 43, 1993 (1990).CrossRefGoogle Scholar
  36. 36.
    N. Troullier and J.L. Martins, Solid State Commun. 74, 613 (1990).CrossRefGoogle Scholar
  37. 37.
    D. Sanchez-Portal, E. Artacho, and J.M. Soler, J. Phys.: Condens. Matter 8, 3859 (1996).Google Scholar
  38. 38.
    R. Tayebee, A. Hosseini-nasr, N. Zamand, and B. Maleki, Polyhedron 102, 503 (2015).CrossRefGoogle Scholar
  39. 39.
    M.K. Yadav, M. Ghosh, R. Biswas, A.K. Raychaudhuri, A. Mookerjee, and S. Datta, Phys. Rev. B 76, 195450 (2007).CrossRefGoogle Scholar
  40. 40.
    P.O. Bedolla, G. Feldbauer, M. Wolloch, S.J. Eder, N. Dörr, P. Mohn, J. Redinger, and A. Vernes, J. Phys. Chem. C 118, 17608 (2014).CrossRefGoogle Scholar
  41. 41.
    M. Yeganeh and F. Badieian Baghsiyahi, J. Phys. Chem. Solids 124, 235 (2019).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Natural ScienceKosar University of BojnordBojnordIran
  2. 2.Nano Research CenterFerdowsi University of MashhadMashhadIran

Personalised recommendations