Advertisement

Schottky Barrier Parameters and Low-Frequency Noise Characteristics of Au/Ni Contact to n-Type β-Ga2O3

  • P. R. Sekhar Reddy
  • V. Janardhanam
  • Hoon-Ki Lee
  • Kyu-Hwan Shim
  • Sung-Nam Lee
  • V. Rajagopal Reddy
  • Chel-Jong ChoiEmail author
Article
  • 9 Downloads

Abstract

An Au/Ni/β-Ga2O3 Schottky barrier diode was fabricated on an 8.6-μm-thick lightly doped drift region grown on heavily doped Ga2O3 substrate, and its electrical and low-frequency noise characteristics were investigated. The diode showed excellent rectifying behavior with the reverse current being saturated with the applied bias and a magnitude of ∼ 10−13 A. The diode exhibited a barrier height of 1.04 eV and a reasonably high reverse breakdown voltage of 540 V without employing any edge termination methods. The Schottky barrier parameters, such as barrier height, ideality factor, and series resistance, were obtained using a range of methods and found to be in close agreement with each other. The interface state density of the Au/Ni/β-Ga2O3 Schottky diode obtained from the capacitance–voltage (CV) method was lower than that determined from the forward current–voltage (IV) characteristics, attributed to the inhomogeneous distribution of interface states at the interface. An analysis of the forward log I–log V plot of the Au/Ni/β-Ga2O3 Schottky diode revealed ohmic-type conduction, and space-charge-limited current dominated the carrier transport mechanisms in lower and higher voltage ranges, respectively. For bias below 0.3 V, the low-frequency noise of the Au/Ni/β-Ga2O3 Schottky diode was a linear combination of two noise components associated with uniformly distributed bulk traps of β-Ga2O3 and the charge fluctuation in the generation-recombination center. On the other hand, for bias above 0.4 eV, the noise spectral density showed a 1/f2 dependence, indicating the domination of generation-recombination noise.

Keywords

β-Ga2O3 Schottky barrier diode interface state density space-charge-limited mechanism low-frequency noise 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    M. Higashiwaki, K. Sasaki, H. Murakami, Y. Kumagai, A. Koukitu, A. Kuramata, T. Masui, and S. Yamakoshi, Semicond. Sci. Technol. 31, 34001 (2016).CrossRefGoogle Scholar
  2. 2.
    A. Li, Q. Feng, J. Zhang, Z. Hu, Z. Feng, K. Zhang, C. Zhang, H. Zhou, and Y. Hao, Superlattices Microstruct. 119, 212 (2018).CrossRefGoogle Scholar
  3. 3.
    M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, Appl. Phys. Lett. 100, 013504 (2012).CrossRefGoogle Scholar
  4. 4.
    K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, IEEE Electron. Dev. Lett. 34, 493 (2013).CrossRefGoogle Scholar
  5. 5.
    M. Higashiwaki, K. Sasaki, K. Goto, K. Nomura, Q.T. Thieu, R. Togashi, H. Murakami, Y. Kumagai, B. Monemar, A. Koukitu, A. Kuramata, and S. Yamakoshi, Technical Digest-73 rd Device Research Conference, p. 29 (2015).Google Scholar
  6. 6.
    M. Higashiwaki, K. Konishi, K. Sasaki, K. Goto, K. Nomura, Q.T. Thieu, R. Togashi, H. Murakami, Y. Kumagai, B. Monemar, A. Koukitu, A. Kuramata, and S. Yamakoshi, Appl. Phys. Lett. 108, 133503 (2016).CrossRefGoogle Scholar
  7. 7.
    M.H. Wong, K. Sasaki, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, IEEE Electron. Dev. Lett. 37, 212 (2016).CrossRefGoogle Scholar
  8. 8.
    S. Oh, G. Yang, and J. Kim, ECS J. Solid State Sci. Technol. 6, Q3022 (2017).CrossRefGoogle Scholar
  9. 9.
    J. Yang, F. Ren, M. Tadjer, S.J. Pearton, and A. Kuramata, AIP Adv. 8, 055026 (2018).CrossRefGoogle Scholar
  10. 10.
    K. Konishi, K. Goto, H. Murakami, Y. Kumagai, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, Appl. Phys. Lett. 110, 103506 (2017).CrossRefGoogle Scholar
  11. 11.
    J. Yang, F. Ren, M. Tadjer, S.J. Pearton, and A. Kuramata, ECS J. Solid State Sci. Technol. 7, Q92 (2018).CrossRefGoogle Scholar
  12. 12.
    E.H. Rhoderick and R.H. Williams, Metal Semiconductor Contacts, 2nd ed. (Oxford: Clarendon Press, 1998).Google Scholar
  13. 13.
    S.K. Cheung and N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986).CrossRefGoogle Scholar
  14. 14.
    I. Jyothi, V. Janardhanam, V. Rajagopal Reddy, and C.-J. Choi, Superlattices Microstruct. 75, 806 (2014).CrossRefGoogle Scholar
  15. 15.
    N. Uma, N. Balaram, P.R. Sekhar Reddy, V. Janardhanam, V. Rajagopal Reddy, H.-J. Yun, S.-N. Lee, and C.-J. Choi, J. Electron. Mater. 48, 4217 (2019).CrossRefGoogle Scholar
  16. 16.
    O. Demircioglu, S. Karatas, N. Yildirim, and O.F. Bakkaloglu, Microelectron. Eng. 88, 2997 (2011).CrossRefGoogle Scholar
  17. 17.
    H. Norde, J. Appl. Phys. 50, 5052 (1979).CrossRefGoogle Scholar
  18. 18.
    P.R. Sekhar Reddy, V. Janardhanam, I. Jyothi, H.-S. Chang, S.-N. Lee, M.S. Lee, V. Rajagopal Reddy, and C.-J. Choi, Superlattices Microstruct. 111, 506 (2017).CrossRefGoogle Scholar
  19. 19.
    P. Chattopadhyay, Solid-State Electron. 38, 739 (1995).CrossRefGoogle Scholar
  20. 20.
    Y.P. Song, R.L. Meirhaeghe, W.H. Laflere, and F. Cardon, Solid-State Electron. 29, 633 (1986).CrossRefGoogle Scholar
  21. 21.
    H. Altuntas, S. Altindal, S. Ozcelik, and H. Shtrikman, Vacuum 83, 1060 (2009).CrossRefGoogle Scholar
  22. 22.
    V. Janardhanam, I. Jyothi, J.-H. Lee, J.-Y. Kim, V. Rajagopal Reddy, and C.-J. Choi, Mater. Trans. 55, 758 (2014).CrossRefGoogle Scholar
  23. 23.
    Y. Zhou, D. Wang, C. Ahyi, C.C. Tin, J. Williams, M. Park, N.M. Williams, A. Hanser, and E.A. Preble, J. Appl. Phys. 101, 024506 (2007).CrossRefGoogle Scholar
  24. 24.
    Z.-F. Zhu, H.-Q. Zhang, H.-W. Liang, X.-C. Peng, J.-J. Zou, B. Tang, and G.-T. Du, Chin. Phys. Lett. 34, 097301 (2017).CrossRefGoogle Scholar
  25. 25.
    P. Viktorovitch, P. Louis, M.P. Besland, and A. Chovet, Solid-State Electron. 38, 1035 (1995).CrossRefGoogle Scholar
  26. 26.
    R. Padma, C. Lee, J.S. Kang, and S.C. Jun, J. Colloid Interface Sci. 550, 48 (2019).CrossRefGoogle Scholar
  27. 27.
    A. Baltakesmez, Vacuum 168, 108825 (2019).CrossRefGoogle Scholar
  28. 28.
    S. Altindal, O. Sevgili, and Y.A. Kalandaragh, J. Mater. Sci. Mater. Electron. 30, 9273 (2019).CrossRefGoogle Scholar
  29. 29.
    X.M. Shen, D.G. Zhao, Z.S. Liu, Z.F. Hu, H. Yang, and J.W. Liang, Solid-State Electron. 49, 84 (2005).CrossRefGoogle Scholar
  30. 30.
    H.G. Cetinkaya, S. Altindal, I. Orak, and I. Uslu, J. Mater. Sci.: Mater. Electron. 28, 7905 (2017).Google Scholar
  31. 31.
    J.B.M. Krishna, A. Saha, G.S. Okram, S. Purakayastha, and B. Ghosh, J. Phys. D Appl. Phys. 42, 115102 (2009).CrossRefGoogle Scholar
  32. 32.
    P. Mark and W. Helfrich, J. Appl. Phys. 33, 205 (1962).CrossRefGoogle Scholar
  33. 33.
    D.S. Shang, Q. Wang, L.D. Chen, R. Dong, X.M. Li, and W.Q. Zhang, Phys. Rev. B 73, 245427 (2006).CrossRefGoogle Scholar
  34. 34.
    A.S. Sarkar and S.K. Pal, J. Phys. D Appl. Phys. 48, 445501 (2015).CrossRefGoogle Scholar
  35. 35.
    T.B. Jomma, L. Beji, A. Ltaeif, and A. Bouazizi, Mater. Sci. Eng. C 26, 530 (2006).CrossRefGoogle Scholar
  36. 36.
    V. Janardhanam, I. Jyothi, P.R. Sekhar Reddy, J. Cho, J.-M. Cho, C.-J. Choi, S.-N. Lee, and V. Rajagopal Reddy, Superlattices Microstruct. 120, 508 (2018).CrossRefGoogle Scholar
  37. 37.
    N.A. Hastas, C.A. Dimitriadis, L. Dozsa, E. Gombia, and G. Kamarinos, in Proceedings of 24th International Conference on Microelectronics, pp. 325–327 (2004).Google Scholar
  38. 38.
    S.T. Hsu, IEEE Trans. Electron Dev. ED-17, 496 (1970).CrossRefGoogle Scholar
  39. 39.
    S.T. Hsu, IEEE Trans. Electron Dev. ED-18, 882 (1971).CrossRefGoogle Scholar
  40. 40.
    X.S. Nguyen, K. Lin, Z. Zhang, B. McSkimming, A.R. Arehart, J.S. Speck, S.A. Ringel, E.A. Fitzgerald, and S.J. Chua, Appl. Phys. Lett. 106, 102101 (2015).CrossRefGoogle Scholar
  41. 41.
    N.A. Hastas, D.H. Tassis, C.A. Dimitriadis, L. Dozsa, S. Franchi, and P. Frigeri, Semicond. Sci. Technol. 19, 461 (2004).CrossRefGoogle Scholar
  42. 42.
    J.I. Lee, J. Brini, A. Chovet, and C.A. Dimitriadis, Solid-State Electron. 43, 2181 (1999).CrossRefGoogle Scholar
  43. 43.
    C.A. Dimitriadis, J. Brini, G. Kamarinos, and G. Ghibaudo, Jpn. J. Appl. Phys. 37, 72 (1998).CrossRefGoogle Scholar
  44. 44.
    N. Arpatzanis, N.A. Hastas, C.A. Dimitriadis, G. Konstantinidis, C. Charitidis, J.D. Song, W.J. Choi, and J.I. Lee, Phys. Status Solidi B 246, 880 (2009).CrossRefGoogle Scholar
  45. 45.
    J.D. Song, W.J. Choi, I.K. Han, J.I. Lee, J.H. Kim, J.I. Song, and A. Chovet, Proc. SPIE 5472, 432 (2004).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC)Chonbuk National UniversityJeonjuRepublic of Korea
  2. 2.R&D Center, Sigertronics Inc.Jeollabuk-doRepublic of Korea
  3. 3.Department of Nano-Optical EngineeringKorea Polytechnic UniversitySiheungRepublic of Korea
  4. 4.Department of PhysicsSri Venkateswara UniversityTirupatiIndia

Personalised recommendations