Advertisement

Humidity Robustness of Plasma-Coated PCBs

  • Aliakbar KhangholiEmail author
  • Feng Li
  • Kamila Piotrowska
  • Samir Loulidi
  • Rajan Ambat
  • Guy Van Assche
  • Annick Hubin
  • Iris De Graeve
Article

Abstract

The reliability of printed circuit boards (PCB) is at risk due to continuous miniaturization. As a result, PCBs are more susceptible to external factors such as humidity, temperature, contamination, etc., which affect their general performance, leading to failure of electronic devices. Therefore, protection of the devices against these factors is gaining greatly in importance. Plasma polymerization is used as a method to form a protective barrier by applying plasma polymer films on PCBs. However, the humidity robustness of such plasma coatings on the PCB surface is unknown. In this work, several methods were used to characterize two types of plasma-coated PCBs based on 1H,1H,2H-perfluorodecyl acrylate precursor (single-layer and stacked coatings) upon exposure to humidity, temperature, and bias voltage. Modulated-temperature differential scanning calorimetry enabled thermal analysis of the plasma coatings. Electrochemical impedance spectroscopy in combination with the gravimetric moisture vapor sorption technique were used to study the interaction of these coatings with moisture and quantify the water uptake. The results revealed an only 2% increase of the capacitance of the coatings due to water uptake. Direct-current (DC) leakage current measurements were used to study the influence of a bias voltage applied between the electrodes on the coated PCBs upon exposure to cyclic climatic conditions. Electrical DC testing revealed the protective character of the stacked coating, which did not fail under the given stress conditions, in contrast to the single-layer plasma coatings.

Keywords

Plasma coatings corrosion climatic conditions water uptake 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The research is funded by Vlaams Agentschap Innoveren en Ondernemen (VLAIO). Europlasma NV is acknowledged for fabrication of samples and funding. The authors would like to thank Celcorr group (DTU) for collaboration and the opportunity to carry out this work.

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    R. Ambat and M. Jellesen, in European Corrosion Congress EUROCORR (2009), pp. 6–10.Google Scholar
  2. 2.
    P.B.P. Phipps and D.W. Rice, Corrosion Chemistry, ed. P. Beverley and P. Phipps (Chicago: American Chemical Society, 1979), p. 235.CrossRefGoogle Scholar
  3. 3.
    H. Conseil, M.S. Jellesen, and R. Ambat, in European Corrosion Congress EUROCORR (2014).Google Scholar
  4. 4.
    V. Verdingovas, M.S. Jellesen, and R. Ambat, J. Electron. Mater. 44, 4 (2015).CrossRefGoogle Scholar
  5. 5.
    K. Piotrowska, V.Verdingovas, M.S. Jellesen, and R. Ambat, in European Corrosion Congress EUROCORR (2015), pp. 1-10.Google Scholar
  6. 6.
    K. Piotrowska, M.S. Jellesen, and R. Ambat, in Proceedings of IMAPS Nordic Conference on Microelectronics Packaging (2018), pp. 72–76.Google Scholar
  7. 7.
    K. Piotrowska, V. Verdingovas, and R. Ambat, J. Mater. Sci. Mater. Electron. 29, 17834 (2018).CrossRefGoogle Scholar
  8. 8.
    M.S. Jellesen, P. Westermann, V. Verdingovas, P. Holm, and R. Ambat, in European Corrosion Congress EUROCORR (2011), pp. 1–14.Google Scholar
  9. 9.
    D. Minzari, F.B. Grumsen, M.S. Jellesen, P. Møller, and R. Ambat, Corros. Sci. 53, 1659 (2011).CrossRefGoogle Scholar
  10. 10.
    M.S. Leltesen, P. Westermann, U. Rathinavelu, D. Minzari, P. Møller, and R. Ambat, Corros. Manag. 17, 17 (2008).Google Scholar
  11. 11.
    V. Verdingovas, M.S. Jellesen, and R. Ambat, in European Corrosion Congress EUROCORR (2012), pp. 1–13.Google Scholar
  12. 12.
    A. Kakaroglou, M. Domini, and I. De Graeve, Surf. Coat. Technol. 303, 330 (2016).CrossRefGoogle Scholar
  13. 13.
    A. Kakaroglou, B. Nisol, T. Hauffman, I. De Graeve, F. Reniers, G. Van Assche, and H. Terryn, Surf. Coat. Technol. 259, 714 (2014).CrossRefGoogle Scholar
  14. 14.
    H.K. Yasuda, Plasma Polymerization, 1st ed. (London: Academic, 1985).Google Scholar
  15. 15.
    N. Morosoff, in Plasma Deposition, Treatment, and Etching of Polymers, ed. By R. d’Agostino (Academic, 1990), p. 1.Google Scholar
  16. 16.
    P.G. De Gennes, Rev. Mod. Phys. 57, 827 (1985).CrossRefGoogle Scholar
  17. 17.
    R. Ambat, H. Conseil-Gudla, and V. Verdingovas, in Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, ed. By K. Wandelt (Elsevier, 2018), p. 134.Google Scholar
  18. 18.
    H. Conseil, M.S. Jellesen, V. Verdingovas, and R. Ambat, in European Corrosion Congress EUROCORR (2013).Google Scholar
  19. 19.
    H. Conseil, M.S. Jellesen, and R. Ambat, in Proceeding of the 16th Electronics Packaging Technology Conference (2014), pp. 355–359.Google Scholar
  20. 20.
    J.B. Jacobsen, J.P. Krog, L. Rimestad, A. Riis, and A.H. Holm, IEEE Ind. Electron. Mag. 8, 51 (2014).CrossRefGoogle Scholar
  21. 21.
    L. Grace, L. Rodriguez, M. Fittipaldi, and C. García, in Proceedings of the American Society for Composites—29th Technical Conference; 16th US-Japan Conference on Composite Materials; ASTM-D30 Meeting (2014).Google Scholar
  22. 22.
    A. Lasia, Electrochemical Impedance Spectroscopy and its Applications (Elsevier, 2014).Google Scholar
  23. 23.
    A. Xu, F. Zhang, F. Jin, R. Zhang, B. Luo, and T. Zhang, Int. J. Electrochem. Sci. 9, 5116 (2014).Google Scholar
  24. 24.
    M. Konieczna, E. Markiewicz, and J. Jurga, Eng. Sci. (2010).  https://doi.org/10.1002/pen.21687.CrossRefGoogle Scholar
  25. 25.
    S. Gómez-Barreiro, C. Gracia-Fernández, and L.N. Regueira, Dielectric Analysis. Experimental (2005).Google Scholar
  26. 26.
    H. Conseil, V.C. Gudla, M.S. Jellesen, and R. Ambat, IEEE Trans. Compon. Packag. Manuf. Technol. 6, 1379 (2016).CrossRefGoogle Scholar
  27. 27.
    A. Millela, R. Di Mundo, F. Palumbo, P. Favia, F. Fracassi, and R. d Agostino, Palsma Process. Polym. 6, 6 (2009).Google Scholar
  28. 28.
    U. Rathinavelu, M.S. Jellesen, P. Moller, and R. Ambat, IEEE Trans. Compon. Packag. Manuf. Technol. 2, 719 (2012).CrossRefGoogle Scholar
  29. 29.
    T.Y. Lin, B. Njoman, D. Crouthamel, K.H. Chua, S.Y. Teo, and Y.Y. Ma, Microelectron. Reliab. (2004).  https://doi.org/10.1016/j.microrel.2003.08.003.CrossRefGoogle Scholar
  30. 30.
    L. Ma, B. Sood, and M. Pecht, IEEE Trans. Device Mater. Reliab. 11, 66 (2011).CrossRefGoogle Scholar
  31. 31.
    X. Fan, J. Zhou, and A. Chandra, in Proceedings of Electronic Components and Technology Conference (2008), pp. 1054–1066.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Research Group of Electrochemical and Surface Engineering (SURF), Department of Materials and ChemistryVrije Universiteit BrusselBrusselsBelgium
  2. 2.Materials and Surface Engineering, Department of Mechanical EngineeringTechnical University of DenmarkKgs. LyngbyDenmark
  3. 3.Europlasma NVOudenaardeBelgium

Personalised recommendations