Advertisement

Field-Orientation-Dependent Dynamic Strain Induced Anisotropic Magnetoelectric Responses in Bi-layered Ferrite/Piezoelectric Composites

  • Jitao ZhangEmail author
  • Kang Li
  • Dongyu Chen
  • D. A. Filippov
  • Qingfang Zhang
  • Shuaiyong Li
  • Xiao Peng
  • Jie Wu
  • Roshan Timilsina
  • Lingzhi CaoEmail author
  • Gopalan Srinivasan
Article
  • 27 Downloads

Abstract

Anisotropic magnetoelectric (ME) responses in bi-layered composites consisting of ferrites and polycrystalline/crystalline piezoelectrics were investigated by changing the applied DC magnetic field orientations, and origins for such effects were clarified by the competition between the dynamic piezomagnetic strain and the dynamic electro-mechanical strain from individual piezomagnetic/piezoelectric subsystems. Experimental results showed that maximum resonance ME voltage coefficient (MEVC) of 133.8.3 V/cm Oe under HDC = 23Oe can be obtained at θ = 0° for PMN-PT/NZFO laminate while one reached 115.3 V/cm Oe at higher field of 98Oe for θ = 75°. As rotation angle θ is varied from 0° to 360°, the HDC-orientation-dependent ME couplings were mainly determined by the dynamic piezomagnetic strain, and the dynamic piezoelectric coefficient versus θ profile can essentially track the MEVC versus θ profile. In addition, we found that the MEVC for PMN-PT/NZFO laminate is approximately twice as high as that of the PZT-8/NZFO laminate due to the stronger electro-mechanical strain of PMN-PT plates, Solid evidence was proved for the HDC-orientation-dependent ME coupling of the rectangle composite that is free of the influences of anisotropic crystalline orientation in PMN-PT plate. These findings open up a research pathway to move forward in this field and provide potential applications in vector angle sensors.

Keywords

Field-orientation-dependent magnetoelectric effects dynamic strain ferrite/piezoelectric composites 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 61973279, 61703066), the Technological Innovation Talent Program of Henan Province (Grant No. 184200510015) and the Key Scientific Research Projects for Universities in Henan Province (Grant No. 18A535001). The study in Russia was supported by the Russian Foundation for Basic Research (Grant No. 18-52-00021). The research at Oakland University, MI, USA was supported by a grant from the National Science Foundation (Grant No. DMR-1808892).

References

  1. 1.
    L. Zhang, W.X. Hou, G.H. Dong, Z.Y. Zhou, S.S. Zhao, Z.Q. Hu, W. Ren, M.F. Chen, C.W. Nan, J. Ma, H. Zhou, W. Chen, Z.G. Ye, Z.D. Jiang, and M. Liu, Mater. Horiz. 5, 991 (2018).CrossRefGoogle Scholar
  2. 2.
    T.X. Nan, J.M. Hu, M.Y. Dai, S. Emori, X.J. Wang, Z.Q. Hu, A. Matyushov, L.Q. Chen, and N.A. Sun, Adv. Funct. Mater. 6, 29 (2019).Google Scholar
  3. 3.
    V.M. Petrov, M.I. Bichurin, K.V. Lavrentyeva, and V.S. Leontiev, J. Electron. Mater. 45, 4496 (2016).CrossRefGoogle Scholar
  4. 4.
    N.A. Spaldin and R. Ramesh, Nat. Mater. 18, 203 (2019).CrossRefGoogle Scholar
  5. 5.
    J. Domann, T. Wu, T.K. Chung, and G. Carman, MRS Bull. 43, 848 (2018).CrossRefGoogle Scholar
  6. 6.
    M. Dong, T. Liu, X.Y. Guo, Y.B. Xiao, Y. Yuan, and Q. Wang, J. Appl. Phys. 3, 125 (2019).Google Scholar
  7. 7.
    D.R. Patil, Y. Zhou, J.E. Kang, N. Sharpes, D.Y. Jeong, Y.D. Kim, K.H. Kim, S. Priya, and J. Ryu, Apl Mater. 4, 2 (2014).Google Scholar
  8. 8.
    S.M. Na, J.J. Park, S. Lee, S.Y. Jeong, and A.B. Flatau, Mater. Lett. 213, 326 (2018).CrossRefGoogle Scholar
  9. 9.
    H. Zhang, J. Magn. Magn. Mater. 324, 190 (2012).CrossRefGoogle Scholar
  10. 10.
    D.Y. Chen, X.S. Gao, and J.M. Liu, Mrs Commun. 6, 330 (2016).CrossRefGoogle Scholar
  11. 11.
    M.J. PourhosseiniAsl, Z.Q. Chu, X.Y. Gao, and S.X. Dong, Appl. Phys. Lett. 9, 113 (2018).Google Scholar
  12. 12.
    D.T.H. Giang, P.A. Duc, N.T. Ngoc, N.T. Hien, and N.H. Duc, Rev. Sci. Instrum. 9, 83 (2012).Google Scholar
  13. 13.
    J.T. Zhang, W.W. Zhu, D.Y. Chen, H.W. Qu, P. Zhou, M. Popov, L.Y. Jiang, L.Z. Cao, and G. Srinivasan, J. Magn. Magn. Mater. 473, 131 (2019).CrossRefGoogle Scholar
  14. 14.
    A. Aubert, V. Loyau, G. Chaplier, F. Mazaleyrat, and M. Lobue, J. Mater. Sci-Mater. El. 29, 14435 (2018).CrossRefGoogle Scholar
  15. 15.
    H. Palneedi, V. Annapureddy, H.Y. Lee, J.J. Choi, S.Y. Choi, S.Y. Chung, S.J.L. Kang, and J.H. Ryu, J Asian Ceram. Soc. 5, 36 (2017).CrossRefGoogle Scholar
  16. 16.
    J.V. Vidal, A.V. Turutin, I.V. Kubasov, M.D. Malinkovich, Y.N. Parkhomenko, S.P. Kobeleva, A.L. Kholkin, and N.A. Sobolev, IEEE T Ultrason. Ferroelectr. 64, 1102 (2017).CrossRefGoogle Scholar
  17. 17.
    L. Chen, Y. Wang, X.Z. Dai, and Z.G. Yang, AIP Adv. 1, 7 (2017).Google Scholar
  18. 18.
    T. Liu, X.L. Wei, and J.X. Cao, J Phys. Condens. Mat. 39, 31 (2019).Google Scholar
  19. 19.
    J. Ryu, S. Priya, A.V. Carazo, K. Uchino, and H.-E. Kim, J. Am. Ceram. Soc. 84, 2905 (2010).CrossRefGoogle Scholar
  20. 20.
    J.Y. Zhai, N. Cai, Z. Shi, Y.H. Lin, and C.W. Nan, J. Appl. Phys. 95, 5685 (2004).CrossRefGoogle Scholar
  21. 21.
    L.X. Bian, Y.M. Wen, P. Li, Y.F. Zhang, and Q.L. Gao, IEEE Trans. Magn. 45, 2613 (2009).CrossRefGoogle Scholar
  22. 22.
    D. R. Patil, Y. Chai, R. C. Kambale, B. G. Jeon, K. Yoo, J. Ryu, W. H. Yoon, D. S. Park, D. Y. Jeong, S. G. Lee, J. Lee, J. H. Nam, J. H. Cho, B. I. Kim and K. H. Kim, Appl. Phys. Lett. 102 (2013)Google Scholar
  23. 23.
    J.V. Vidal, A.A. Timopheev, A.L. Kholkin, and N.A. Sobolev, Vacuum 122, 286 (2015).CrossRefGoogle Scholar
  24. 24.
    P. Martins, A. Larrea, R. Goncalves, G. Botelho, E.V. Ramana, S.K. Mendiratta, V. Sebastian, and S. Lanceros-Mendez, ACS Appl. Mater. Interfaces 7, 11224 (2015).CrossRefGoogle Scholar
  25. 25.
    Z.X. Chen, Y. Su, and S.A. Meguid, J. Appl. Phys. 17, 116 (2014).Google Scholar
  26. 26.
    J.X. Ye, J.M. Hu, Z. Shi, Z. Li, Y. Shen, J. Ma, and C.W. Nan, Adv. Mater. Sci. Eng. 1, 5 (2014).Google Scholar
  27. 27.
    H. Yao, Y. Shi, and Y.W. Gao, J. Appl. Phys. 23, 118 (2015).Google Scholar
  28. 28.
    L.F. Niu, Y. Shi, and Y.W. Gao, AIP Adv. 4, 9 (2019).Google Scholar
  29. 29.
    D. Patil, J.H. Kim, Y.S. Chai, J.H. Nam, J.H. Cho, B.I. Kim, and K.H. Kim, Appl. Phys. Express 7, 4 (2011).Google Scholar
  30. 30.
    Z. Wu, Z.H. Xiang, Y.M. Jia, Y.H. Zhang, and H.S. Luo, J. Appl. Phys. 10, 112 (2012).Google Scholar
  31. 31.
    K.H. Cho and S. Priya, Appl. Phys. Lett. 23, 98 (2011).Google Scholar
  32. 32.
    C.S. Zhang, T.Y. Ma, and M. Yan, J. Appl. Phys. 6, 110 (2011).Google Scholar
  33. 33.
    Y.K. He, J.M.D. Coey, R. Schaefer, and C.B. Jiang, Phys. Rev. Mater. 1, 2 (2018).Google Scholar
  34. 34.
    J. T. Zhang, P. Li, Y. M. Wen, W. He, A. C. Yang and C. J. Lu, Appl Phys Lett. 103 (2013)Google Scholar
  35. 35.
    A. Aubert, V. Loyau, Y. Pascal, F. Mazaleyrat, and M. LoBue, Phys. Rev. Appl. 4, 9 (2018).Google Scholar
  36. 36.
    Y.M. Pei, X. Feng, X. Gao, and D.N. Fang, J. Alloy. Compd. 476, 556 (2009).CrossRefGoogle Scholar
  37. 37.
    W.G. Yang, N.A. Morley, J. Sharp, Y. Tian, and W.M. Rainforth, Appl. Phys. Lett. 1, 108 (2016).Google Scholar
  38. 38.
    Changsheng Zhang, Tianyu Ma, and Mi Yan, J. Appl. Phys. 110, 531 (2011).CrossRefGoogle Scholar
  39. 39.
    T.X. Nan, Z.Y. Zhou, M. Liu, X. Yang, Y. Gao, B.A. Assaf, H. Lin, S. Velu, X.J. Wang, H.S. Luo, J. Chen, S. Akhtar, E. Hu, R. Rajiv, K. Krishnan, S. Sreedhar, D. Heiman, B.M. Howe, G.J. Brown, and N.X. Sun, Sci. Rep.-UK 1, 4 (2014).Google Scholar
  40. 40.
    S. Chen, X.F. Yang, J. Ouyang, G.Q. Lin, F. Jin, and B. Tong, Ceram. Int. 40, 3419 (2014).CrossRefGoogle Scholar
  41. 41.
    C.H. Yang, Y.M. Wen, P. Li, and L.X. Bian, Acta Phys. Sin-Ch Ed. 57, 7292 (2008).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Jitao Zhang
    • 1
    Email author
  • Kang Li
    • 1
  • Dongyu Chen
    • 1
  • D. A. Filippov
    • 2
  • Qingfang Zhang
    • 1
  • Shuaiyong Li
    • 3
  • Xiao Peng
    • 4
  • Jie Wu
    • 1
  • Roshan Timilsina
    • 5
  • Lingzhi Cao
    • 1
    Email author
  • Gopalan Srinivasan
    • 5
  1. 1.College of Electrical and Information EngineeringZhengzhou University of Light IndustryZhengzhouChina
  2. 2.Institute of Electronic and Information SystemsNovgorod State UniversityVeliky NovgorodRussia
  3. 3.Key Laboratory of Industrial Internet of Things and Networked Control of Ministry of EducationChongqing University of Posts and TelecommunicationsChongqingChina
  4. 4.The 26th Institute of China Electronics Technology Group CorporationChongqingChina
  5. 5.Physics DepartmentOakland UniversityRochesterUSA

Personalised recommendations