Core-Double Shell Nano-hybrids Designed by Multi-walled Carbon Nanotubes, Polyaniline and Polythiophenes in PBDT-DTNT:PC61BM Solar Cells

  • As’ad AlizadehEmail author
  • Samira AgbolaghiEmail author


Core–mantle–shell supramolecules composed of carbon nanotube (CNT)-graft-polyaniline (PANI), poly(3-hexylthiophene) (P3HT), and poly[benzodithiophene-bis(decyltetradecyl-thien) naphthothiadiazole] (PBDT-DTNT) precursors were designed and utilized in PBDT-DTNT:phenyl-C61-butyric acid methyl ester (PC61BM) solar cells. Weight ratio of polymer:CNT-graft-PANI was 9:1 and the weight ratios were 1:1 in binary and 1:1:1 in ternary systems. Diameters of core(CNT)–mantle(PANI), core(CNT)–mantle(PANI)–shell(P3HT), and core(CNT)–mantle(PANI)–shell(PBDT-DTNT) nanostructures ranged in 75–90 nm, 145–160 nm, and 120–130 nm, respectively. Efficacies of 6.82% (13.92 mA/cm2, 0.71 V, 69%, 7.1 × 10−3 cm2/V s and 1.9 × 10−2 cm2/V s) and 7.60% (14.66 mA/cm2, 0.73 V, 71%, 9.0 × 10−3 cm2/V s and 3.4 × 10−2 cm2/V s) were acquired for photovoltaics based on the nanostructures having PBDT-DTNT and P3HT shells, respectively. The PANI mantle may act as both acceptor (accepting the electrons from core) and donor (donating the electrons to shell) in the configuration of core–mantle–shell supramolecules. The P3HT shells acted better than the PBDT-DTNT ones, originated from the simple structure of P3HT backbones and their more ordered and thicker shells, and thus had larger charge mobilities and currents.

Graphical Abstract


PANI P3HT PBDT-DTNT core–mantle–shell photovoltaic device 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Supplementary material

11664_2019_7702_MOESM1_ESM.pdf (599 kb)
Supplementary material 1 (PDF 599 kb)


  1. 1.
    T.Y. Chu, J. Lu, S. Beaupre, Y. Zhang, J.R. Pouliot, S. Wakim, J. Zhou, M. Leclerc, Z. Li, J. Ding, and Y. Tao, J. Am. Chem. Soc. 133, 4250 (2011).CrossRefGoogle Scholar
  2. 2.
    M.H. Rahaman and H. Tsuji, J. Appl. Polym. Sci. 129, 2502 (2013).CrossRefGoogle Scholar
  3. 3.
    H.C. Chen, Y.H. Chen, C.C. Liu, Y.C. Chien, S.W. Chou, and P.T. Chou, Chem. Mater. 24, 4766 (2012).CrossRefGoogle Scholar
  4. 4.
    S.C. Price, A.C. Stuart, L. Yang, H. Zhou, and W. You, J. Am. Chem. Soc. 133, 4625 (2011).CrossRefGoogle Scholar
  5. 5.
    H. Zhou, L. Yang, A.C. Stuart, S.C. Price, S. Liu, and W. You, Angew. Chem. Int. Ed. 50, 2995 (2011).CrossRefGoogle Scholar
  6. 6.
    S. van Bavel, S. Veenstra, and J. Loos, Macromol. Rapid Commun. 31, 1835 (2010).CrossRefGoogle Scholar
  7. 7.
    Y. Liang, Z. Xu, J. Xia, S.T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, Adv. Mater. 22, E135 (2010).CrossRefGoogle Scholar
  8. 8.
    B. Minnaert and M. Burgelman, Prog. Photovolt. 15, 741 (2007).CrossRefGoogle Scholar
  9. 9.
    C. Bounioux, E.A. Katz, and R. Yerushalmi-Rozen, Polym. Adv. Technol. 23, 1129 (2012).CrossRefGoogle Scholar
  10. 10.
    S. Cataldo, P. Salice, E. Menna, and B. Pignataro, Energy Environ. Sci. 5, 5919 (2012).CrossRefGoogle Scholar
  11. 11.
    M.H. Ham, G.L. Paulus, C.Y. Lee, C. Song, K. Kalantar-Zadeh, W. Choi, J.H. Han, and M.S. Strano, ACS Nano 4, 6251 (2010).CrossRefGoogle Scholar
  12. 12.
    B. Ratier, J.M. Nunzi, M. Aldissi, T.M. Kraft, and E. Buncel, Polym. Int. 61, 342 (2012).CrossRefGoogle Scholar
  13. 13.
    S. Ren, M. Bernardi, R.R. Lunt, V. Bulovic, J.C. Grossman, and S. Gradecak, Nano Lett. 11, 5316 (2011).CrossRefGoogle Scholar
  14. 14.
    P.M. Ajayan, Chem. Rev. 99, 1787 (1999).CrossRefGoogle Scholar
  15. 15.
    R.H. Baughman, A.A. Zakhidov, and W.A. De Heer, Science 297, 787 (2002).CrossRefGoogle Scholar
  16. 16.
    M.J. O’Connell, P. Boul, L.M. Ericson, C. Huffman, Y. Wang, E. Haroz, C. Kuper, J. Tour, K.D. Ausman, and R.E. Smalley, Chem. Phys. Lett. 342, 265 (2001).CrossRefGoogle Scholar
  17. 17.
    D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato, Chem. Rev. 106, 1105 (2006).CrossRefGoogle Scholar
  18. 18.
    J. Geng and T. Zeng, J. Am. Chem. Soc. 128, 16827 (2006).CrossRefGoogle Scholar
  19. 19.
    L. Dai and A.W. Mau, Adv. Mater. 13, 899 (2001).CrossRefGoogle Scholar
  20. 20.
    I. Musa, M. Baxendale, G.A.J. Amaratunga, and W. Eccleston, Synth. Met. 102, 1250 (1999).CrossRefGoogle Scholar
  21. 21.
    B. Pradhan, S.K. Batabyal, and A.J. Pal, J. Phys. Chem. B 110, 8274 (2006).CrossRefGoogle Scholar
  22. 22.
    S.G. Bachhav and D.R. Patil, Am. J. Mater. Sci. 5, 90 (2015).Google Scholar
  23. 23.
    X. Jiang, Y. Bin, and M. Matsuo, Polymer 46, 7418 (2005).CrossRefGoogle Scholar
  24. 24.
    Y. Luo, F.A. Santos, T.W. Wagner, E. Tsoi, and S. Zhang, J. Phys. Chem. B 118, 6038 (2014).CrossRefGoogle Scholar
  25. 25.
    L. Li, C.Y. Li, and C. Ni, J. Am. Chem. Soc. 128, 1692 (2006).CrossRefGoogle Scholar
  26. 26.
    J. Liu, J. Zou, and L. Zhai, Macromol. Rapid Commun. 30, 1387 (2009).CrossRefGoogle Scholar
  27. 27.
    J. Zou, S.I. Khondaker, Q. Huo, and L. Zhai, Adv. Funct. Mater. 19, 479 (2009).CrossRefGoogle Scholar
  28. 28.
    B. Philip, J. Xie, A. Chandrasekhar, J. Abraham, and V.K. Varadan, Smart Mater. Struct. 13, 295 (2004).CrossRefGoogle Scholar
  29. 29.
    B.K. Kuila, S. Malik, S.K. Batabyal, and A.K. Nandi, Macromolecules 40, 278 (2007).CrossRefGoogle Scholar
  30. 30.
    S. Agbolaghi, S. Charoughchi, S. Aghapour, F. Abbasi, A. Bahadori, and R. Sarvari, Sol. Energy 170, 138 (2018).CrossRefGoogle Scholar
  31. 31.
    M. Wang, X. Hu, P. Liu, W. Li, X. Gong, F. Huang, and Y. Cao, J. Am. Chem. Soc. 133, 9638 (2011).CrossRefGoogle Scholar
  32. 32.
    V.H. Nguyen, L. Tang, and J.J. Shim, Colloid Polym. Sci. 291, 2237 (2013).CrossRefGoogle Scholar
  33. 33.
    Y.J. Shin, S.H. Kim, D.H. Yang, H.S. Kwon, and J.S. Shin, J. Ind. Eng. Chem. 16, 380 (2010).CrossRefGoogle Scholar
  34. 34.
    V.H. Nguyen and J.J. Shim, J. Spectrosc. (2015). Scholar
  35. 35.
    J. Stejskal, P. Kratochvil, and N. Radhakrishnan, Synth. Met. 61, 225 (1993).CrossRefGoogle Scholar
  36. 36.
    S. Zenoozi, S. Agbolaghi, M. Nazari, and F. Abbasi, Mater. Sci. Semicond. Process. 64, 85 (2017).CrossRefGoogle Scholar
  37. 37.
    S. Aghapour, S. Agbolaghi, S. Charoughchi, R. Sarvari, and F. Abbasi, Polym. Int. 68, 64 (2019).CrossRefGoogle Scholar
  38. 38.
    B. Xu, J. Choi, A.N. Caruso, and P.A. Dowben, Appl. Phys. Lett. 80, 4342 (2002).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, College of EngineeringUniversity of ZakhoZakho CityIraq
  2. 2.Chemical Engineering Department, Faculty of EngineeringAzarbaijan Shahid Madani UniversityTabrizIran

Personalised recommendations