Lightweight Epoxy-Based Composites for EMI Shielding Applications

  • Poulami Banerjee
  • Yudhajit Bhattacharjee
  • Suryasarathi BoseEmail author
Progress and Challenges in Developing Electromagnetic Interference Materials
Part of the following topical collections:
  1. Progress and Challenges in Developing Electromagnetic Interference Materials


The rapid advancement in wireless technology has become both a boon and a curse for mankind. With the development of sophisticated electronics that serve to ease our day-to-day work, the emergence of electromagnetic waves from individual components interfere with each other and harm our physical as well as mental well-being. In this scenario, epoxy-based composites are emerging to be a state-of-the-art electromagnetic interference (EMI) shielding alternative to conventional materials such as metals. Their lightweight structure and improved mechanical properties render epoxy composites extremely efficient for structural applications. Reinforcements in the form of particles/fabrics are widely used in this regard. The present review deals with the various advancements in the field of modifications of epoxy composites to develop EMI shielding materials. Primary focus has been given on the development of lightweight epoxy modified composites through carbonaceous reinforcements either in the form of particles or fiber mats. Synthesis of hybrid nanoparticles in an epoxy matrix to account for both reflection and absorption losses has also been detailed in this review. Subsequently, we present an outlook on which the direction of future research work can be carried out.

Graphic Abstract

Cartoon depicting the outlook of various reinforcements that have been used in the last few years in constructing epoxy composites for EMI shielding applications.


Epoxy surface modification polymer composite structure–property EMI shielding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    I. Nam, H.-K. Lee, and J. Jang, Compos. Part A Appl. Sci. Manuf. 42, 1110 (2011).CrossRefGoogle Scholar
  2. 2.
    Y. Bhattacharjee, I. Arief, and S. Bose, J. Mater. Chem. C 5, 7390 (2017).CrossRefGoogle Scholar
  3. 3.
    S. Sprenger, J. Appl. Polym. Sci. 130, 1421 (2013).CrossRefGoogle Scholar
  4. 4.
    F.-L. Jin, X. Li, and S.-J. Park, J. Ind. Eng. Chem. 29, 1 (2015).CrossRefGoogle Scholar
  5. 5.
    J. Pan, Y. Xu, and J. Bao, J. Appl. Polym. Sci. 135, 46013 (2018).CrossRefGoogle Scholar
  6. 6.
    R. Rohini and S. Bose, ACS Omega 3, 3200 (2018).CrossRefGoogle Scholar
  7. 7.
    J. Wu, Z. Ye, H. Ge, J. Chen, W. Liu, and Z. Liu, J. Colloid Interface Sci. 506, 217 (2017).CrossRefGoogle Scholar
  8. 8.
    M. Paligová, J. Vilčáková, P. Sáha, V. Křesálek, J. Stejskal, and O. Quadrat, Phys. A 335, 421 (2004).CrossRefGoogle Scholar
  9. 9.
    Y. Huang, N. Li, Y. Ma, F. Du, F. Li, and X. He, Carbon 45, 1614 (2007).CrossRefGoogle Scholar
  10. 10.
    X. Yan, L. Xiang, Q. He, J. Gu, J. Dang, and J. Guo, Multifunct. Nanocompos. Energy Environ. Appl. 2, 567 (2018).Google Scholar
  11. 11.
    M. Gupta and E.W.W. Leong, Microwaves and Metals (Hoboken: Wiley, 2008).Google Scholar
  12. 12.
    D.E. Bockelman and W.R. Eisenstadt, IEEE Trans. Microw. Theory Tech. 43, 1530 (1995).CrossRefGoogle Scholar
  13. 13.
    A. Beyer and I. Wolff, in 1980 10th European Microwave Conference (1980), p. 322.Google Scholar
  14. 14.
    L. Liao, H. Peng, and Z. Liu, J. Am. Chem. Soc. 136, 12194 (2014).CrossRefGoogle Scholar
  15. 15.
    X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, and Q. Zhang, Small 7, 1876 (2011).CrossRefGoogle Scholar
  16. 16.
    X. Huang, X. Qi, F. Boey, and H. Zhang, Chem. Soc. Rev. 41, 666 (2012).CrossRefGoogle Scholar
  17. 17.
    C.-W. Lou, C.-L. Huang, Y.-J. Pan, Z.-I. Lin, X.-M. Song, and J.-H. Lin, J. Polym. Res. 23, 84 (2016).CrossRefGoogle Scholar
  18. 18.
    M.E. Spahr, R. Gilardi, and D. Bonacchi, in Polymers and Polymeric Composites: A Reference Series (2016), p. 1.Google Scholar
  19. 19.
    M.E. Spahr and R. Rothon, Fillers for Polymer Applications. Polymers and Polymeric Composites: A Reference Series, ed. R. Rothon (Cham: Springer, 2017).Google Scholar
  20. 20.
    N.A. Aal, F. El-Tantawy, A. Al-Hajry, and M. Bououdina, Polym. Compos. 29, 125 (2008).CrossRefGoogle Scholar
  21. 21.
    P. Kuzhir, A. Paddubskaya, A. Plyushch, N. Volynets, S. Maksimenko, and J. Macutkevic, J. Appl. Phys. 114, 164304 (2013).CrossRefGoogle Scholar
  22. 22.
    R.H. Baughman, A.A. Zakhidov, and W.A. De Heer, Science 297, 787 (2002).CrossRefGoogle Scholar
  23. 23.
    N. Li, Y. Huang, F. Du, X. He, X. Lin, and H. Gao, Nano Lett. 6, 1141 (2006).CrossRefGoogle Scholar
  24. 24.
    S.A. Hashemi, S.M. Mousavi, M. Arjmand, N. Yan, and U. Sundararaj, Polym. Compos. 39, E1139 (2018).CrossRefGoogle Scholar
  25. 25.
    A. Allaoui, S. Bai, H.-M. Cheng, and J. Bai, Compos. Sci. Technol. 62, 1993 (2002).CrossRefGoogle Scholar
  26. 26.
    L. Schadler, S.A. Giannaris, and P. Ajayan, Appl. Phys. Lett. 73, 3842 (1998).CrossRefGoogle Scholar
  27. 27.
    Y. Chen, H.B. Zhang, Y. Yang, M. Wang, A. Cao, and Z.Z. Yu, Adv. Funct. Mater. 26, 447 (2016).CrossRefGoogle Scholar
  28. 28.
    R. Rohini, K. Lasitha, and S. Bose, J. Mater. Chem. C 4, 352 (2016).CrossRefGoogle Scholar
  29. 29.
    Y. Xu, Y. Li, W. Hua, A. Zhang, and J. Bao, ACS Appl. Mater. Interfaces. 8, 24131 (2016).CrossRefGoogle Scholar
  30. 30.
    X. Fan, G. Zhang, J. Li, Z. Shang, H. Zhang, and Q. Gao, Compos. Part A Appl. Sci. Manuf. 121, 64 (2019).Google Scholar
  31. 31.
    J. Li, G. Zhang, Z. Ma, X. Fan, X. Fan, and J. Qin, Compos. Sci. Technol. 129, 70 (2016).CrossRefGoogle Scholar
  32. 32.
    K. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, and S. Morozov, in Proceedings of the National Academy of Sciences, vol. 102 (2005), p. 10451.Google Scholar
  33. 33.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, and S.V. Dubonos, Science 306, 666 (2004).CrossRefGoogle Scholar
  34. 34.
    M.A. Rafiee, J. Rafiee, I. Srivastava, Z. Wang, H. Song, and Z.Z. Yu, Small 6, 179 (2010).CrossRefGoogle Scholar
  35. 35.
    J. Kim, B.-S. Yim, J.-M. Kim, and J. Kim, Microelectron. Reliab. 52, 595 (2012).CrossRefGoogle Scholar
  36. 36.
    J.K. Lee, S. Song, and B. Kim, Polym. Compos. 33, 1263 (2012).CrossRefGoogle Scholar
  37. 37.
    S. Qiu, C. Wang, Y. Wang, C. Liu, X. Chen, and H. Xie, Express Polym. Lett. 5, 809 (2011).CrossRefGoogle Scholar
  38. 38.
    J. Wei, T. Vo, and F. Inam, RSC Adv. 5, 73510 (2015).CrossRefGoogle Scholar
  39. 39.
    H. Feng, X. Wang, and D. Wu, Ind. Eng. Chem. Res. 52, 10160 (2013).CrossRefGoogle Scholar
  40. 40.
    Y. Chen, H.-B. Zhang, Y. Huang, Y. Jiang, W.-G. Zheng, and Z.-Z. Yu, Compos. Sci. Technol. 118, 178 (2015).CrossRefGoogle Scholar
  41. 41.
    J. Jia, X. Sun, X. Lin, X. Shen, Y.-W. Mai, and J.-K. Kim, ACS Nano 8, 5774 (2014).CrossRefGoogle Scholar
  42. 42.
    Y.-J. Wan, S.-H. Yu, W.-H. Yang, P.-L. Zhu, R. Sun, and C.-P. Wong, RSC Adv. 6, 56589 (2016).CrossRefGoogle Scholar
  43. 43.
    X. Liu, X. Yin, L. Kong, Q. Li, Y. Liu, and W. Duan, Carbon 68, 501 (2014).CrossRefGoogle Scholar
  44. 44.
    L. Chen, X. Yin, X. Fan, M. Chen, X. Ma, and L. Cheng, Carbon 95, 10 (2015).CrossRefGoogle Scholar
  45. 45.
    E. Fitzer and R. Weiss, Carbon 25, 455 (1987).CrossRefGoogle Scholar
  46. 46.
    M. Sharma, S. Gao, E. Mäder, H. Sharma, L.Y. Wei, and J. Bijwe, Compos. Sci. Technol 102, 35 (2014).CrossRefGoogle Scholar
  47. 47.
    G. Williams, R. Trask, and I. Bond, Compos. Part A Appl. Sci. Manuf. 38, 1525 (2007).CrossRefGoogle Scholar
  48. 48.
    Y. Ramadin, S. Jawad, S. Musameh, M. Ahmad, A. Zihlif, and A. Paesano, Polym. Int. 34, 145 (1994).CrossRefGoogle Scholar
  49. 49.
    J. Wu and D. Chung, Carbon 40, 445 (2002).CrossRefGoogle Scholar
  50. 50.
    M. Gholampoor, F. Movassagh-Alanagh, and H. Salimkhani, Solid State Sci. 64, 51 (2017).CrossRefGoogle Scholar
  51. 51.
    H. Duan, H. Zhu, J. Yang, J. Gao, Y. Yang, and L. Xu, Compos. Part A Appl. Sci. Manuf. 118, 41 (2019).CrossRefGoogle Scholar
  52. 52.
    R. Rohini and S. Bose, Compos. Part B: Eng. 161, 578 (2019).CrossRefGoogle Scholar
  53. 53.
    C. Méjean, M. Badard, R. Benzerga, C. Le Paven-Thivet, and A. Sharaiha, Mater. Res. Bull. 96, 94 (2017).CrossRefGoogle Scholar
  54. 54.
    C. Méjean, L. Pometcu, R. Benzerga, A. Sharaiha, C. Le Paven-Thivet, and M. Badard, Mater. Sci. Eng., B 220, 59 (2017).CrossRefGoogle Scholar
  55. 55.
    H.-L. Ma, Z. Jia, K.-T. Lau, J. Leng, and D. Hui, Compos. Part B Eng. 92, 210 (2016).CrossRefGoogle Scholar
  56. 56.
    G. Simeoli, D. Acierno, C. Meola, L. Sorrentino, S. Iannace, and P. Russo, Compos. Part B Eng. 62, 88 (2014).CrossRefGoogle Scholar
  57. 57.
    K.-Y. Park, S.-E. Lee, C.-G. Kim, and J.-H. Han, Compos. Struct. 81, 401 (2007).CrossRefGoogle Scholar
  58. 58.
    J.-H. Oh, K.-S. Oh, C.-G. Kim, and C.-S. Hong, Compos. Part B Eng. 35, 49 (2004).CrossRefGoogle Scholar
  59. 59.
    W.-K. Jung, S.-H. Ahn, and M.-S. Won, J. Compos. Mater. 40, 175 (2006).CrossRefGoogle Scholar
  60. 60.
    L. Gao, T.-W. Chou, E.T. Thostenson, A. Godara, Z. Zhang, and L. Mezzo, Carbon 48, 2649 (2010).CrossRefGoogle Scholar
  61. 61.
    B. Guttmann, U.S. patent 6,171,357 B1 (9 January 2001).Google Scholar
  62. 62.
    X. Shui and D. Chung, J. Electron. Mater. 26, 928 (1997).CrossRefGoogle Scholar
  63. 63.
    J. Gamble and L. D. Yats, U.S. patent 5,399,295 (21 March 1995).Google Scholar
  64. 64.
    D. Bigg and D. Stutz, Polym. Compos. 4, 40 (1983).CrossRefGoogle Scholar
  65. 65.
    R.M. Simon, Polym. Plast. Technol. Eng. 17, 1 (1981).CrossRefGoogle Scholar
  66. 66.
    J. Perelaer, C.E. Hendriks, A.W. de Laat, and U.S. Schubert, Nanotechnology 20, 165303 (2009).CrossRefGoogle Scholar
  67. 67.
    H. Wang, Q. Wei, J. Wang, J. Hong, and X. Zhao, Surf. Eng. 24, 70 (2008).CrossRefGoogle Scholar
  68. 68.
    D. Sahu, S.-Y. Lin, and J.-L. Huang, Microelectron. J. 38, 245 (2007).CrossRefGoogle Scholar
  69. 69.
    J. Balaraju, P. Radhakrishnan, V. Ezhilselvi, A.A. Kumar, Z. Chen, and K. Surendran, Surf. Coat. Technol. 302, 389 (2016).CrossRefGoogle Scholar
  70. 70.
    X. Jing, Y. Wang, and B. Zhang, J. Appl. Polym. Sci. 98, 2149 (2005).CrossRefGoogle Scholar
  71. 71.
    Y. Niu, Polym. Eng. Sci. 48, 355 (2008).CrossRefGoogle Scholar
  72. 72.
    M.K. Erdoğan, M. Karakişla, and M. Saçak, J. Macromol. Sci. Part A 49, 473 (2012).CrossRefGoogle Scholar
  73. 73.
    N.E. Kamchi, B. Belaabed, J.L. Wojkiewicz, S. Lamouri, and T. Lasri, J. Appl. Polym. Sci. 127, 4426 (2013).CrossRefGoogle Scholar
  74. 74.
    C. Phan, M. Mariatti, and Y. Koh, J. Magn. Magn. Mater. 401, 472 (2016).CrossRefGoogle Scholar
  75. 75.
    S. Mishra, P. Katti, S. Kumar, and S. Bose, Chem. Eng. J. 357, 384 (2019).CrossRefGoogle Scholar
  76. 76.
    K.S. Dijith, S. Pillai, and K.P. Surendran, Surf. Coat. Technol. 330, 34 (2017).CrossRefGoogle Scholar
  77. 77.
    Y. Zhang, B. Zhang, K. Li, G.-L. Zhao, and S. Guo, J. Alloys Compd. 734, 220 (2018).CrossRefGoogle Scholar
  78. 78.
    M. Naguib, V.N. Mochalin, M.W. Barsoum, and Y. Gogotsi, Adv. Mater. 26, 992 (2014).CrossRefGoogle Scholar
  79. 79.
    Y.-L. Ren, H.-Y. Wu, M.-M. Lu, Y.-J. Chen, C.-L. Zhu, and P. Gao, ACS Appl. Mater. Interfaces. 4, 6436 (2012).CrossRefGoogle Scholar
  80. 80.
    L. Wang, H. Qiu, C. Liang, P. Song, Y. Han, and Y. Han, Carbon 141, 506 (2019).CrossRefGoogle Scholar
  81. 81.
    Y. Bhattacharjee, D. Chatterjee, and S. Bose, ACS Mater. Interfaces 10, 30762 (2018).CrossRefGoogle Scholar
  82. 82.
    Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao, and H. Chen, Adv. Mater. 27, 2049 (2015).CrossRefGoogle Scholar
  83. 83.
    C.R. Paul, Introduction to Electromagnetic Compatibility, Vol. 184 (Hoboken: Wiley, 2006).Google Scholar
  84. 84.
    X.C. Tong, Advanced Materials and Design for Electromagnetic Interference Shielding (Cambridge: CRC Press, 2016).CrossRefGoogle Scholar
  85. 85.
    C.K. Alexander and M.N.O. Sadiku, Fundamentals of Electric Circuits (McGraw-Hill, Inc, 2005).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Materials EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations