Advertisement

Preparation of SiC/SiO2 Hard Core–Soft Shell Abrasive and Its CMP Behavior on Sapphire Substrate

  • Sanwei Dai
  • Hong LeiEmail author
  • Jifang FuEmail author
Article
  • 1 Downloads

Abstract

Sapphire is the mainstream substrate material of light-emitting diode chips, but it is difficult to process due to its high hardness and good chemical stability. Currently, its processing technology is still not mature. In this work, one kind of silicon carbide/silicon oxide (SiC/SiO2) hard core–soft shell abrasive was described. The chemical mechanical polishing properties of SiC/SiO2 core–shell abrasives on sapphire wafers were investigated. The experimental results show that the surface of silicon carbide (SiC) coated with silicon oxide (SiO2) can significantly improve the polishing performance of the abrasives. Especially when the amount of SiO2 coating is 15 wt.%, the SiC/SiO2 core–shell abrasive has the highest polishing rate and the best surface roughness. The improvement in polishing performance is due to the fact that the SiO2 shell can reduce the hardness of the abrasives while increasing the reactivity of the abrasives with the sapphire wafer.

Keywords

Sapphire substrate planarization chemical mechanical polishing (CMP) silicon carbide/silicon oxide (SiC/SiO2) core–shell abrasive 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51475279, 51375291).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    E.R. Dobrovinskaya, L.A. Lytvynov, and V. Pishchik, Sapphire: Material, Manufacturing, Applications (Berlin: Springer, 2009)Google Scholar
  2. 2.
    L. Chen, B. Liu, M. Ge, Y. Ma, A.N. Abbas, and C. Zhou, ACS Nano 9, 8368 (2015).CrossRefGoogle Scholar
  3. 3.
    W.C. Ke, C.Y. Chiang, W. Son, and F.W. Lee, Appl. Surf. Sci. 456, 967 (2018).CrossRefGoogle Scholar
  4. 4.
    E. Oksenberg, E. Sanders, R. Popovitz-Biro, L. Houben, and E. Joselevich, Nano Lett. 18, 424 (2017).CrossRefGoogle Scholar
  5. 5.
    G. Yang, J. Chang, J. Zhao, Y. Tong, and F. Xie, Mater. Sci. Semicond. Proc. 33, 149 (2015).CrossRefGoogle Scholar
  6. 6.
    Z.C. Lin, W.S. Huang, and J.S. Tsai, J. Mech. Sci. Technol. 26, 2353 (2012).CrossRefGoogle Scholar
  7. 7.
    S. Zhou and S. Liu, Appl. Surf. Sci. 255, 9469 (2009).CrossRefGoogle Scholar
  8. 8.
    Y. Wang, S. Liu, G. Peng, S. Zhou, and J. Xu, J. Cryst. Growth 274, 241 (2005).CrossRefGoogle Scholar
  9. 9.
    Y.N. Zhang, B. Lin, and Z.C. Li, ECS Trans. 52, 495 (2013).CrossRefGoogle Scholar
  10. 10.
    W. Xu, X. Lu, G. Pan, Y. Lei, and J. Luo, Appl. Surf. Sci. 256, 3936 (2010).CrossRefGoogle Scholar
  11. 11.
    W. Feng, W. Lu, H. Zhou, B. Yang, and D. Zuo, Appl. Surf. Sci. 387, 784 (2016).CrossRefGoogle Scholar
  12. 12.
    A. Sorooshian, R. Ashwani, H. K. Choi, M. Moinpour, A. Oehler, and A. Tregub, MRS Online Proceedings Library Archive (2004), p. 816.Google Scholar
  13. 13.
    C. Zhou, L. Shan, J.R. Hight, S. Danyluk, S.H. Ng, and A.J. Paszkowski, Tribol. Trans. 45, 232 (2002).CrossRefGoogle Scholar
  14. 14.
    C. Park, H. Kim, S. Lee, and H. Jeong, Int. J. Precis. Eng. Manuf. Technol. 2, 157 (2015).CrossRefGoogle Scholar
  15. 15.
    T. Liu and H. Lei, Appl. Surf. Sci. 413, 16 (2017).CrossRefGoogle Scholar
  16. 16.
    H. Lei and K. Tong, Precis. Eng. 44, 124 (2016).CrossRefGoogle Scholar
  17. 17.
    P. Ma, H. Lei, and R.L. Chen, Micro Nano Lett. 10, 657 (2015).CrossRefGoogle Scholar
  18. 18.
    B. Zhang, H. Lei, and Y. Chen, Friction 5, 429 (2017).CrossRefGoogle Scholar
  19. 19.
    H. Lei, L. Huang, and Q. Gu, J. Mater. Sci. Mater. Electron. 28, 1229 (2017).CrossRefGoogle Scholar
  20. 20.
    Y. Dong, H. Lei, W. Liu, and Y. Chen, J. Alloys Compd. 777, 1294 (2019).CrossRefGoogle Scholar
  21. 21.
    Y. Dong, H. Lei, W. Liu, T. Wang, and L. Xu, J. Mater. Sci. 53, 10732 (2018).CrossRefGoogle Scholar
  22. 22.
    H. Kong, D. Wang, W.L. Liu, and Z.T. Song, J. Wuhan Univ. Technol. 34, 86 (2019).CrossRefGoogle Scholar
  23. 23.
    N. Bun-Athuek, H. Takazaki, Y. Yoshimoto, P. Khajornrungruang, T. Yasunaga, and K. Suzuki, Jpn J. Appl. Phys. 57, 07MD03 (2018).CrossRefGoogle Scholar
  24. 24.
    Y. Xu, J. Lu, and X. Xu, Appl. Surf. Sci. 389, 713 (2016).CrossRefGoogle Scholar
  25. 25.
    X. Wang, H. Lei, and R. Chen, Precis. Eng. 50, 263 (2017).CrossRefGoogle Scholar
  26. 26.
    J. Lu, Y. Xu, D. Zhang, and X. Xu, Materials 10, 673 (2017).CrossRefGoogle Scholar
  27. 27.
    Y. Wang, R.L. Chen, H. Lei, and R.R. Jiang, in Proceedings of the 3rd Annual 2015 International Conference on Material Science and Engineering (ICMSE2015) (2015), p. 389.Google Scholar
  28. 28.
    X. Shang, Y. Zhu, and Z. Li, Appl. Surf. Sci. 394, 169 (2017).CrossRefGoogle Scholar
  29. 29.
    H. Lei and P.Z. Zhang, Appl. Surf. Sci. 253, 8754 (2007).CrossRefGoogle Scholar
  30. 30.
    X. Chen, Y. Zhao, and Y. Wang, Appl. Surf. Sci. 258, 8469 (2012).CrossRefGoogle Scholar
  31. 31.
    Y. Zhou, G.S. Pan, H. Gong, X. Shi, and C. Zou, Colloid Surf. A 513, 153 (2017).CrossRefGoogle Scholar
  32. 32.
    H.W. Gutsche and J.W. Moody, J. Electrochem. Soc. 125, 136 (1978).CrossRefGoogle Scholar
  33. 33.
    X. Shi, G. Pan, Y. Zhou, L. Xu, C. Zou, and H. Gong, Surf. Coat. Technol. 270, 206 (2015).CrossRefGoogle Scholar
  34. 34.
    G. Ahmadi and X. Xia, J. Electrochem. Soc. 148, 99 (2001).CrossRefGoogle Scholar
  35. 35.
    R. Chen, R. Jiang, H. Lei, and M. Liang, Appl. Surf. Sci. 264, 148 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringShanghai UniversityShanghaiChina
  2. 2.Research Center of Nano Science and TechnologyShanghai UniversityShanghaiChina

Personalised recommendations