Advertisement

Elastic and Thermodynamic Properties Prediction of Mg2Sn and MgTe by First-Principle Calculation and Quasi-Harmonic Debye Model

  • Xin Li
  • Hui Xie
  • Bin Yang
  • Shuangming LiEmail author
Article

Abstract

Structural stability of MgTe is discussed in terms of total energy and formation energy. Mechanical and thermodynamic properties of Mg2Sn and MgTe were investigated using first-principle calculations and the quasi-harmonic Debye model. The calculated results indicate that the bulk (B) and shear (G) moduli increase linearly with increasing pressure. In the pressure range of 0–10 GPa, the ratio of G/B decrease for Mg2Sn from 0.66 to 0.568 and increase for MgTe from 0.262 to 0.327. Low-frequency acoustic branches and high-frequency optical branches are separated for both Mg2Sn and MgTe. Activity of the branches determines the trend of Debye temperature with increasing temperature. The top values of CV for Mg2Sn and MgTe are 74.5 J mol−1 K−1 and 23.8 J mol−1 K−1, respectively, at T < 400 K, and then these values remain constant. The CV value of MgTe is three times lower than that of Mg2Sn. This result indicates that MgTe is expected to have lower lattice thermal conductivity, and this agrees well with the calculated results of electronic structure.

Keywords

Elastic properties thermodynamic properties first-principle calculation quasi-harmonic Debye model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by National Natural Science Foundation of China [51904219], the Natural Science Foundation of Xi’an Aeronautical University [No. 2019KY0203].

References

  1. 1.
    H.Y. Chen, N. Savvides, T. Dasgupta, C. Stiewe, and E. Mueller, Phys. Status Solidi A 207, 2523 (2010).CrossRefGoogle Scholar
  2. 2.
    J. Mao, H.S. Kim, J. Shuai, Z.H. Liu, R. He, U. Saparamadu, and F. Tian, Acta Mater. 103, 633 (2016).CrossRefGoogle Scholar
  3. 3.
    B. Fang, Z.G. Zeng, X.X. Yan, and Z.Y. Hu, J. Mater. Sci.: Mater. Electron. 24, 1105 (2013).Google Scholar
  4. 4.
    Y. Zhu, J. Li, D. Bo, Y. Li, P.C. Zhai, and P. Li, J. Mater. Sci.: Mater. Electron. 28, 9535 (2017).Google Scholar
  5. 5.
    F.J. DiSalvo, Science 285, 703 (1999).CrossRefGoogle Scholar
  6. 6.
    Q. Zhang, J. He, T.J. Zhu, S.N. Zhang, and X.B. Zhao, Appl. Phys. Lett. 93, 102109 (2008).CrossRefGoogle Scholar
  7. 7.
    W. Liu, Q. Zhang, K. Yin, H. Chi, X.Y. Zhou, X.F. Tang, and C. Uher, J. Solid State Chem. 203, 333 (2013).CrossRefGoogle Scholar
  8. 8.
    P. Gao, X. Lu, I. Berkun, R.D. Schmidt, E.D. Case, and T.P. Hogan, Appl. Phys. Lett. 105, 202104 (2014).CrossRefGoogle Scholar
  9. 9.
    H.Y. Chen and N. Savvides, J. Cryst. Growth 312, 2328 (2010).CrossRefGoogle Scholar
  10. 10.
    X. Li, S.M. Li, S.K. Feng, H. Zhong, and H.Z. Fu, J. Electron. Mater. 45, 2895 (2016).CrossRefGoogle Scholar
  11. 11.
    X. Li, S.M. Li, S.K. Feng, and H. Zhong, Intermetallics 81, 26 (2017).CrossRefGoogle Scholar
  12. 12.
    N. Savvides and H.Y. Chen, J. Electron. Mater. 39, 2136 (2010).CrossRefGoogle Scholar
  13. 13.
    T. Li, H. Luo, R.G. Greene, A.L. Ruoff, S.S. Trail, and F.J. Di Salvo, Phys. Rev. Lett. 74, 5232 (1995).CrossRefGoogle Scholar
  14. 14.
    G. Gökoğlu, M. Durandurdu, and O. Gülseren, Comp. Mater. Sci. 47, 593 (2009).CrossRefGoogle Scholar
  15. 15.
    S. Duman, S. Bagci, M. Tutuncu, and G.P. Privastava, Phys. Rev. B 73, 205201 (2006).CrossRefGoogle Scholar
  16. 16.
    J.H. Yang, S.Y. Chen, W.J. Yin, and X.G. Gong, Phys. Rev. B 79, 245202 (2009).CrossRefGoogle Scholar
  17. 17.
    F. Drief, A. Tadjer, D. Mesri, and H. Aourag, Catal. Today 89, 343 (2004).CrossRefGoogle Scholar
  18. 18.
    S.K. Feng, S.M. Li, and H.Z. Fu, Comp. Mater. Sci. 82, 45 (2014).CrossRefGoogle Scholar
  19. 19.
    M.A. Blanco, E. Francisco, and V. Luaña, Comput. Phys. Commun. 158, 57 (2004).CrossRefGoogle Scholar
  20. 20.
    Y. Liu, W.C. Hu, D.J. Li, X.Q. Zeng, and C.S. Xu, Phys. Scripta 88, 45302 (2013).CrossRefGoogle Scholar
  21. 21.
    L. Petrova, N.K. Abrikosov, L.D. Dudkin, V.M. Sokolova, and V.V. Musaelyan, Inorg. Mater. 26, 1023 (1990).Google Scholar
  22. 22.
    D. Vanderbilt, Phys. Rev. B: Condens. Matter 41, 7892 (1990).CrossRefGoogle Scholar
  23. 23.
    M. Marlo and V. Milman, Phys. Rev. B 62, 2899 (2000).CrossRefGoogle Scholar
  24. 24.
    C.Y. Yeh, Z.W. Lu, S. Froyen, and A. Zunger, Phys. Rev. B 46, 10086 (1992).CrossRefGoogle Scholar
  25. 25.
    C.E. Kim, A. Soon, and C. Stampfl, Chem. Phys. 18, 939946 (2016).Google Scholar
  26. 26.
    A.J. Wang, S.L. Shang, Y. Du, Y. Kong, L.J. Zhang, L. Chen, D.D. Zhao, and Z.K. Liu, Comp. Mater. Sci. 48, 705 (2010).CrossRefGoogle Scholar
  27. 27.
    H.R. Lei, J. Zhu, Y.J. Hao, L. Zhang, B.R. Yu, L.Q. Chen, and Y.C. Zou, Phys. B 458, 124 (2015).CrossRefGoogle Scholar
  28. 28.
    D.W. Zhou, J.S. Liu, S.H. Xu, and P. Peng, Comp. Mater. Sci. 51, 409 (2012).CrossRefGoogle Scholar
  29. 29.
    R.J. Kearney, T.G. Worlton, and R.E. Schmunk, J. Phys. Chem. Solids 31, 1085 (1970).CrossRefGoogle Scholar
  30. 30.
    F.J. Jelinek, W.D. Shickell, and B.C. Gerstein, J. Phys. Chem. Solids 28, 267 (1967).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Materials EngineeringXi’an Aeronautical UniversityXi’anPeople’s Republic of China
  2. 2.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations