The Effect of Indium Doping on Deep Level Defects and Electrical Properties of CdZnTe

  • Fan Yang
  • Wanqi Jie
  • Gangqiang Zha
  • Shouzhi Xi
  • Miao Wang
  • Tao WangEmail author


CdZnTe (CZT) ingots doped with different concentrations of indium (2 ppm, 5 ppm, 8 ppm, and 11 ppm) were grown by the Vertical Bridgman Method. The charge transport behaviors of CZT wafers were characterized by Thermally Stimulated Current (TSC), Time of Flight technique (TOF) and Current–Voltage measurements (IV). TSC results indicate that the concentration of deep donor defects \( {\hbox{Te}}_{\rm{Cd}}^{{ 2 { + }}} \) is reduced significantly by increasing indium dopant content from 2 ppm to 8 ppm, while that of indium related traps, \( {\hbox{In}}_{\rm{Cd}}^{ + } \) and A-centers, is sharply increased. Hecht fitting and TOF results indicate that the electron mobility keeps nearly unchanged for different dopant concentrations in the region between 2 ppm and 5 ppm, but the lifetime increased greatly with increasing indium dopant concentration. Therefore, (μτ)e value was increased with higher indium dopant. The up-shift of Fermi level is also observed in the temperature-dependent IV result with the increasing of indium dopant content. Large Schottky barriers are found in detectors with higher indium concentration. High voltage x-ray response results show that the channel number shifts to the low energy side for 2 ppm dopant samples compared with best performance 5 ppm dopant samples, while the full-energy peaks are broadened for 8 ppm and 11 ppm dopant samples.


CdZnTe indium dopant deep level defect electrical property 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (51672216), the National Key R&D Program of China (2016YFB0402405, 2016YFF0101301), the Fundamental Research Funds for the Central Universities (3102019ghxm015), and the Research Fund of the State Key Laboratory of Solidification Processing (NPU), China (Grant No. 2019-TS-05).


  1. 1.
    Y. Eisen and A. Shor, J. Cryst. Growth 184–185, 1302 (1998).CrossRefGoogle Scholar
  2. 2.
    T.E. Schlesinger, J.E. Toney, H. Yoon, E.Y. Lee, B.A. Brunett, L. Franks, and R.B. James, Mater. Sci. Eng. R: Rep. 32, 103 (2001).CrossRefGoogle Scholar
  3. 3.
    V.M. Zaletin, At. Energy 97, 773 (2004).CrossRefGoogle Scholar
  4. 4.
    V.M. Azhazha, V.E. Kutnii, A.V. Rybka, I.N. Shlyakhov, D.V. Kutnii, and A.A. Zakharchenko, At. Energy 92, 508 (2002).CrossRefGoogle Scholar
  5. 5.
    R. Gul, K. Keeter, R. Rodriguez, A.E. Bolotnikov, A. Hossain, G.S. Camarda, K.H. Kim, G. Yang, Y. Cui, V. Carcelén, J. Franc, Z. Li, and R.B. James, J. Electron. Mater. 41, 488 (2012).CrossRefGoogle Scholar
  6. 6.
    M. Fiederle, A. Fauler, J. Konrath, V. Babentsov, J. Franc, and, R.B. James, IEEE Trans. Nucl. Sci. 51, 1864 (2004).CrossRefGoogle Scholar
  7. 7.
    O. Panchuk, A. Savitskiy, P. Fochuk, Y. Nykonyuk, O. Parfenyuk, L. Shcherbak, M. IIashchuk, L. Yatsunyk, and P. Feychuk, J. Cryst. Growth 197, 607 (1999).CrossRefGoogle Scholar
  8. 8.
    M.R. Lorenz, J. Phys. Chem. Solids 23, 939 (1962).CrossRefGoogle Scholar
  9. 9.
    E. Watson and D. Shaw, J. Phys. C: Solid State Phys. 16, 515 (1983).CrossRefGoogle Scholar
  10. 10.
    G. Yang, W. Jie, Q. Li, T. Wang, G. Li, and H. Hua, J. Cryst. Growth 283, 431 (2005).CrossRefGoogle Scholar
  11. 11.
    L. Xu, W. Jie, X. Fu, A.E. Bolotnikov, R.B. James, T. Feng, G. Zha, T. Wang, Y. Xu, and Y. Zaman, J. Cryst. Growth 409, 71 (2015).CrossRefGoogle Scholar
  12. 12.
    M. Chu, S. Terterian, D. Ting, C.C. Wang, H.K. Gurgenian, and S. Mesropian, Appl. Phys. Lett. 79, 2728 (2001).CrossRefGoogle Scholar
  13. 13.
    M. Fiederle, C. Eiche, M. Salk, R. Schwarz, and K.W. Benz, J. Appl. Phys. 84, 6689 (1998).CrossRefGoogle Scholar
  14. 14.
    V. Babentsov, J. Franc, P. Hoeschl, M. Fiederle, K. Benz, N. Sochinskii, E. Dieguez, and R. James, Cryst. Res. Technol. 44, 1054 (2009).CrossRefGoogle Scholar
  15. 15.
    M. Pavlović and U.V. Desnica, J. Appl. Phys. 84, 2018 (1998).CrossRefGoogle Scholar
  16. 16.
    Q. Li, W. Jie, L. Fu, T. Wang, G. Yang, X. Bai, and G. Zha, J. Cryst. Growth 295, 124 (2006).CrossRefGoogle Scholar
  17. 17.
    L. Shcherbak, P. Feychuk, O. Kopach, O. Falenchuk, and O. Panchuk, J. Chim. Phys. 95, 1757 (1998).CrossRefGoogle Scholar
  18. 18.
    J.P. Biersack and L.G. Haggmark, Nucl. Instrum. Methods 174, 257 (1980).CrossRefGoogle Scholar
  19. 19.
    J.C. Erickson, H.W. Yao, R.B. James, H. Hermon, and M. Greaves, J. Electron. Mater. 29, 699 (2000).CrossRefGoogle Scholar
  20. 20.
    G. Zha, J. Yang, L. Xu, T. Feng, N. Wang, and W. Jie, J. Appl. Phys. 115, 043715 (2014).CrossRefGoogle Scholar
  21. 21.
    Y. Xu, W. Jie, P. Sellin, T. Wang, W. Liu, G. Zha, P. Veeramani, and C. Mills, J. Phys. D Appl. Phys. 42, 035105 (2009).CrossRefGoogle Scholar
  22. 22.
    T. Takahashi, and S. Watanabe, IEEE Trans. Nucl. Sci. 48, 950 (2001).CrossRefGoogle Scholar
  23. 23.
    A.E. Bolotnikov, S.E. Boggs, C.M.H. Chen, W.R. Cook, and F.A. Harrison, SM Schindler. Nucl. Instrum. Methods Phys. Res. Sect. A 482, 395 (2002).CrossRefGoogle Scholar
  24. 24.
    A. Cola and I. Farella, Appl. Phys. Lett. 105, 203501 (2014).CrossRefGoogle Scholar
  25. 25.
    Z. He, G.F. Knoll, D.K. Wehe, and J. Miyamoto, Nucl. Instrum. Methods Phys. Res. Sect. A 388, 180 (1997).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Solidification Processing, and Key Laboratory of Radiation Detection Materials and Devices, Ministry of Industry and Information Technology, School of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi’anP.R. China
  2. 2.Imdetek Corporation LtdXi’anP.R. China

Personalised recommendations