Two-Phase η′ + η Region in Cu6Sn5 Intermetallic: Insight into the Order–Disorder Transition from Diffusion Couples

  • Christian Wieser
  • Werner Hügel
  • Alexander Walnsch
  • Andreas LeineweberEmail author
TMS2019 Phase Stability in Electronic Materials
Part of the following topical collections:
  1. TMS2019 Phase Stability, Phase Transformations, and Reactive Phase Formation in Electronic Materials XVIII


The ongoing electrification and miniaturization increase the quality demands on solder joints. A bottleneck for solder joint reliability can be the intermetallic Cu6Sn5 phase, which undergoes a phase transition, implying a volume change in a relevant temperature range. There are contradicting reports on the sign and magnitude of this volume change, which possibly implements stresses and cracks in solder joints. To clarify the characteristics of the phase transition, different samples were manufactured by applying industrial-like standards and isothermal heat treatments around the predicted phase transition temperature. Using x-ray diffraction, a coexistence of ordered η′ and disordered η was detected in samples treated at 438–445 K. The lattice parameters show that the volume of the disordered η phase is approximately 0.64–0.65% smaller than the one of the ordered η′ phase. A comparison with order–disorder transitions in structurally related phases shows that the volume change based on order–disorder transitions is normally of opposite sign and around 0.1–0.2%. Therefore, an effect of different compositions is considered responsible for the volume change. Adopting the exact composition Cu6Sn5 (Cu1.20Sn) for the η′ phase, it was estimated, based on density functional theory calculations from the literature, that the coexisting η phase assumes lower Cu content of Cu1.171Sn at 438 K and Cu1.174Sn at 445 K. In contrast, the lattice parameters of η′, generated at different temperatures, imply a largely temperature-independent composition of Cu1.20Sn. This leads to adjustments of the Cu-Sn phase diagram.


Solder joint intermetallics solid-state reaction phase transition order–disorder transition x-ray diffraction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Supplementary material

11664_2019_7643_MOESM1_ESM.pdf (214 kb)
Supplementary material 1 (PDF 214 kb)
11664_2019_7643_MOESM2_ESM.xy (203 kb)
Supplementary material 2 (PDF 203 kb)
11664_2019_7643_MOESM3_ESM.xy (203 kb)
Supplementary material 3 (PDF 203 kb)
11664_2019_7643_MOESM4_ESM.xy (203 kb)
Supplementary material 4 (PDF 203 kb)
11664_2019_7643_MOESM5_ESM.xy (203 kb)
Supplementary material 5 (PDF 202 kb)


  1. 1.
    S. Lidin and A.-K. Larsson, J. Solid State Chem. 118, 313 (1995).CrossRefGoogle Scholar
  2. 2.
    A.-K. Larsson, L. Stenberg, and S. Lidin, Acta Crystallogr. Sect. B: Struct. Sci. 50, 636 (1994).CrossRefGoogle Scholar
  3. 3.
    A.-K. Larsson, L. Stenberg, S. Lidin, and Z. Kristallogr, Cryst. Mater. 210, 832 (1995).Google Scholar
  4. 4.
    Y. Wu, J. Barry, T. Yamamoto, Q. Gu, S. McDonald, S. Matsumura, H. Huang, and K. Nogita, Acta Mater. 60, 6581 (2012).CrossRefGoogle Scholar
  5. 5.
    D.K. Mu, S.D. McDonald, J. Read, H. Huang, and K. Nogita, Curr. Opin. Solid State Mater. Sci. 20, 55 (2016).CrossRefGoogle Scholar
  6. 6.
    C. Wieser, A. Walnsch, W. Huegel, and A. Leineweber, J. Alloys Comp. 794, 491 (2019).CrossRefGoogle Scholar
  7. 7.
    A. Leineweber, M. Ellner, and E. Mittemeijer, J. Solid State Chem. 159, 191 (2001).CrossRefGoogle Scholar
  8. 8.
    A. Leineweber, J. Solid State Chem. 177, 1197 (2004).CrossRefGoogle Scholar
  9. 9.
    A. Leineweber, J. Solid State Chem. 182, 1846 (2009).CrossRefGoogle Scholar
  10. 10.
    M. Elding-Pontén, L. Stenberg, A.-K. Larsson, S. Lidin, and K. Ståhl, J. Solid State Chem. 129, 231 (1997).CrossRefGoogle Scholar
  11. 11.
    M. Elding-Pontén, L. Stenberg, S. Lidin, G. Madariaga, and J.M. Pérez-Mato, Acta Crystallogr. Sect. B: Struct. Sci. 53, 364 (1997).CrossRefGoogle Scholar
  12. 12.
    S. Lidin and S. Piao, Eur. J. Inorg. Chem. 31, 3548 (2018).CrossRefGoogle Scholar
  13. 13.
    M. Ellner, T. Gödecke, and K. Schubert, J. Less Common Met. 24, 23 (1971).CrossRefGoogle Scholar
  14. 14.
    A.-K. Larsson and R. Withers, J. Alloys Compd. 264, 125 (1998).CrossRefGoogle Scholar
  15. 15.
    N. Saunders and A.P. Miodownik, Bull. Alloy Phase Diagr. 3, 278 (1990).CrossRefGoogle Scholar
  16. 16.
    G. Raynor, The Equilibrium Diagram of the System Copper–Tin (London: Institute of Metals, 1944).Google Scholar
  17. 17.
    A. Westgren, G. Phragmén, and Z. Anorg, Allg. Chem. 175, 80 (1928).CrossRefGoogle Scholar
  18. 18.
    S. Fuertauer, D. Li, D. Cupid, and H. Flandorfer, Intermetallics 34, 142 (2013).CrossRefGoogle Scholar
  19. 19.
    S. Lidin, S. Piao, and Z. Anorg, Allg. Chem. 635, 611 (2009).CrossRefGoogle Scholar
  20. 20.
    P. Franke and D. Neuschuetz, Binary Systems. Part 3: Binary Systems from Cs-K to Mg-Zr (Landolt-Börnstein—Group IV Physical Chemistry) (Berlin: Springer, 2005), pp. 1–4.CrossRefGoogle Scholar
  21. 21.
    M.Y. Li, Z.H. Zhang, and J. Kim, Appl. Phys. Lett. 98, 201901 (2011).CrossRefGoogle Scholar
  22. 22.
    G. Zeng, S.D. McDonald, J.J. Read, Q. Gu, and K. Nogita, Acta Mater. 69, 135 (2014).CrossRefGoogle Scholar
  23. 23.
    G. Ghosh and M. Asta, J. Mater. Res. 20, 3102 (2005).CrossRefGoogle Scholar
  24. 24.
    K. Nogita, C.M. Gourlay, and T. Nishimaru, J. Electron. Mater. 61, 45 (2009).Google Scholar
  25. 25.
    D. Mu, J. Read, Y. Yang, and K. Nogita, J. Mater. Res. 26, 2660 (2011).CrossRefGoogle Scholar
  26. 26.
    K. Nogita, D. Mu, S. McDonald, J. Read, and Y. Wu, Intermetallics 26, 78 (2012).CrossRefGoogle Scholar
  27. 27.
    J. Xian, G. Zeng, S. Belyakov, Q. Gu, K. Nogita, and C. Gourlay, Intermetallics 91, 50 (2017).CrossRefGoogle Scholar
  28. 28.
    Bruker AXS GmbH, TOPAS V. 5.0, Karlsruhe (2004)Google Scholar
  29. 29.
    P. Thompson, D.E. Cox, and J.B. Hastings, J. Appl. Crystallogr. 20, 79 (1987).CrossRefGoogle Scholar
  30. 30.
    G.S. Pawley, J. Appl. Crystallogr. 14, 357 (1981).CrossRefGoogle Scholar
  31. 31.
    W.L. Bragg, Philos. Mag. 28, 355 (1914).CrossRefGoogle Scholar
  32. 32.
    H. Knödler, Acta Crystallogr. 10, 86 (1957).CrossRefGoogle Scholar
  33. 33.
    A. Gangulee, G.C. Das, and M.B. Bever, Metall. Trans. 4, 2063 (1973).CrossRefGoogle Scholar
  34. 34.
    Y. Yuan, Y. Guan, D. Li, and N. Moelans, J. Alloys Compd. 661, 282 (2016).CrossRefGoogle Scholar
  35. 35.
    G. Zeng, S.D. McDonald, Q. Gu, Y. Terada, K. Uesugi, H. Yasuda, and K. Nogita, Acta Mater. 83, 357 (2015).CrossRefGoogle Scholar
  36. 36.
    V. Vuorinen, T. Laurila, T. Mattila, E. Heikinheimo, and J.K. Kivilahti, J. Electron. Mater. 36, 1355 (2007).CrossRefGoogle Scholar
  37. 37.
    A. Leineweber, S.L. Shang, and Z.K. Liu, Acta Mater. 86, 374 (2015).CrossRefGoogle Scholar
  38. 38.
    S. Ramos de Debiaggi, C. Deluque Toro, G.F. Cabeza, and A. Fernández Guillermet, J. Alloys Compd. 542, 280 (2012).CrossRefGoogle Scholar
  39. 39.
    L. Cheng, A. Boettger, T.H. de Keijser, and E.J. Mittemeijer, Scr. Metall. Mater. 24, 509 (1990).CrossRefGoogle Scholar
  40. 40.
    F.J.J. van Loo, Prog. Solid State Chem. 20, 47 (1990).CrossRefGoogle Scholar
  41. 41.
    T. Gressmann, A. Leineweber, and E.J. Mittemeijer, Philos. Mag. 88, 145 (2008).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Institute of Materials ScienceTU Bergakademie FreibergFreibergGermany
  2. 2.Automotive Electronics/Engineering Assembly Interconnect Technology (AE/EAI), Robert Bosch GmbHSchwieberdingenGermany

Personalised recommendations