Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Broadband Electromagnetic Response and Enhanced Microwave Absorption in Carbon Black and Magnetic Fe3O4 Nanoparticles Reinforced Polyvinylidenefluoride Composites

  • 32 Accesses

Abstract

High-efficiency Electromagnetic Interference (EMI) shielding materials are essential in the harsh environment created by unwanted electromagnetic (EM) signals. In this work, polyvinylidenefluoride (PVDF) composites reinforced with magnetic Fe3O4 nanoparticles and cost-effective conducting carbon black (CB) were derived by a solution mixing and coagulation method. Coagulation is found to be an effective method to fabricate uniform composites of materials having higher tendency to form aggregates. The three-dimensionally extending conducting network created by CB and the hopping electrons from Fe3O4 result in high electrical conductivity of PVDF/CB/Fe3O4 composites (PCF). The permittivity, permeability and impedance spectra in the 10 MHz–1 GHz broadband region indicate that dielectric loss is dominating over magnetic loss and is attributed to the collection of a large number of capacitive regions at the interfaces formed by CB and Fe3O4, which results in the enhanced interfacial polarization losses in PCF composites. The composites exhibit EMI shielding effectiveness (EMI SE) greater than 20 dB and their shielding mechanisms involve dielectric losses, magnetic losses and their synergistic interaction. The matching input impedance of the composites allows the radiations to enter into the material and it undergoes multiple internal reflections at the interfaces and the energy of the internally reflected radiation is subsequently absorbed by CB. These different mechanisms result in an absorption dominated EMI shielding with a total EMI SE of 55.3 dB (99.9997% of shielding) for PCF-40 composite having thickness 2 mm and an average skin depth of 0.37 mm in the X-band microwave region.

This is a preview of subscription content, log in to check access.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. 1.

    M.-M. Lu, M.-S. Cao, Y.-H. Chen, W.-Q. Cao, J. Liu, H.-L. Shi, D.-Q. Zhang, W.-Z. Wang, and J. Yuan, ACS Appl. Mater. Interfaces 7, 19408 (2015).

  2. 2.

    J.-Z. He, X.-X. Wang, Y.-L. Zhang, and M.-S. Cao, J. Mater. Chem. C 4, 7130 (2016).

  3. 3.

    M.-S. Cao, J.-C. Shu, X.-X. Wang, X. Wang, M. Zhang, H.-J. Yang, X.-Y. Fang, and J. Yuan, Ann. Phys. (Berlin) 531, 1800390 (2019).

  4. 4.

    P. He, X.-X. Wang, Y.-Z. Cai, J.-C. Shu, Q.-L. Zhao, J. Yuan, and M.-S. Cao, Nanoscale 11, 6080 (2019).

  5. 5.

    F. Ren, D. Song, Z. Li, L. Jia, Y. Zhao, D. Yan, and P. Ren, J. Mater. Chem. C 6, 1476 (2018).

  6. 6.

    S.-H. Lee, D. Kang, and I.-K. Ohdsfja, Carbon 111, 248 (2017).

  7. 7.

    J.-M. Thomassin, C. Jérôme, T. Pardoen, C. Bailly, I. Huynen, and C. Detrembleur, Mater. Sci. Eng., R 74, 211 (2013).

  8. 8.

    Z. Zeng, M. Chen, Y. Pei, S.I.S. Shahabadi, B. Che, P. Wang, and X. Lu, ACS Appl. Mater. Interfaces 9, 32211 (2017).

  9. 9.

    Y.-J. Wan, P.-L. Zhu, S.-H. Yu, R. Sun, C.-P. Wong, and W.-H. Liao, Carbon 115, 629 (2017).

  10. 10.

    B.V.B. Rao, P. Yadav, R. Aepuru, H.S. Panda, S. Ogale, and S.N. Kale, Phys. Chem. Chem. Phys. 17, 18353 (2015).

  11. 11.

    M. Crespo, N. Méndez, M. González, J. Baselga, and J. Pozuelo, Carbon 74, 63 (2014).

  12. 12.

    P. Modak, S.B. Kondawar, and D.V. Nandanwar, Procedia Mater. Sci. 10, 588 (2015).

  13. 13.

    R.R. Mohan, S.J. Varma, and J. Sankaran, Appl. Phys. Lett. 108, 154101 (2016).

  14. 14.

    D. Jiang, V. Murugadoss, Y. Wang, J. Lin, T. Ding, Z. Wang, Q. Shao, C. Wang, H. Liu, N. Lu, R. Wei, A. Subramania, and Z. Guo, Polym. Rev. 59, 280 (2019).

  15. 15.

    V. Lalan, A.P. Narayanan, K.P. Surendran, and S. Ganesanpotti, ACS Omega 4, 8196 (2019).

  16. 16.

    H. Wang, K. Zheng, X. Zhang, Y. Wang, C. Xiao, L. Chen, and X. Tian, Mater. Res. Express 5, 125304 (2018).

  17. 17.

    S.-T. Hsiao, C.-C.M. Ma, H.-W. Tien, W.-H. Liao, Y.-S. Wang, S.-M. Li, C.-Y. Yang, S.-C. Lin, and R.-B. Yang, ACS Appl. Mater. Interfaces 7, 2817 (2015).

  18. 18.

    M. Verma, P. Verma, S.K. Dhawan, and V. Choudhary, RSC Adv. 5, 97349 (2015).

  19. 19.

    A. Mandal and A.K. Nandi, ACS Appl. Mater. Interfaces 5, 747 (2013).

  20. 20.

    G. Mago, D. M. Kalyon and F. T. Fisher, J. Nanomater. 2008, 8 (2008)

  21. 21.

    B. Zhao, C. Zhao, M. Hamidinejad, C. Wang, R. Li, S. Wang, K. Yasamin, and C.B. Park, J. Mater. Chem. C 6, 10292 (2018).

  22. 22.

    G.S. Kumar, D. Vishnupriya, A. Joshi, S. Datarb, and T.U. Patro, Phys. Chem. Chem. Phys. 17, 20347 (2015).

  23. 23.

    Y. Chen, Y. Wang, H.-B. Zhang, X. Li, C.-X. Gui, and Z.-Z. Yu, Carbon 82, 67 (2015).

  24. 24.

    Y.-L. Ren, H.-Y. Wu, M.-M. Lu, Y.-J. Chen, C.-L. Zhu, P. Gao, M.-S. Cao, C.-Y. Li, and Q.-Y. Ouyang, ACS Appl. Mater. Interfaces 4, 6436 (2012).

  25. 25.

    J. Liu, J. Cheng, R. Che, J. Xu, M. Liu, and Z. Liu, J. Phys. Chem. C 117, 489 (2013).

  26. 26.

    Y. Yin, M. Zeng, J. Liu, W. Tang, H. Dong, R. Xia, and R. Yu, Sci. Rep. 6, 25075 (2016).

  27. 27.

    A. Chaudhary, R. Kumar, S. Teotia, S.K. Dhawan, S.R. Dhakatea, and S. Kumari, J. Mater. Chem. C 5, 322 (2017).

  28. 28.

    Y. Yanga, M. Lib, Y. Wu, T. Wang, E.S.G. Choo, J. Ding, B. Zong, Z. Yang, and J. Xue, Nanoscale. 8, 15989 (2016).

  29. 29.

    Z. Zhang, X. Zhao, and J. Li, Electrochim. Acta 176, 1296 (2015).

  30. 30.

    D. Lai, X. Chen, X. Liu, and Y. Wang, ACS Appl. Nano Mater. 10, 5854 (2018).

  31. 31.

    A. Radoń, D. Łukowiec, M. Kremzer, J. MikuŁa, and P. WŁodarczyk, Materials 11, 735 (2018).

  32. 32.

    B. Zhao, M. Hamidinejad, C. Zhao, R. Li, S. Wang, Y. Kazemi, and C.B. Park, J. Mater. Chem. A 7, 133 (2019).

  33. 33.

    M. Hamidinejad, B. Zhao, R.K.M. Chu, N. Moghimian, H.E. Naguib, T. Filleter, and C.B. Park, ACS Appl. Mater. Interfaces 10, 19987 (2018).

  34. 34.

    M.S. Cao, X.X. Wang, W. Cao, X. Fang, B. Wen, and J. Yuan, Small 14, 1800987 (2018).

  35. 35.

    C.-W. Tang, B. Li, L. Sun, B. Lively, and W.-H. Zhong, Eur. Polym. J. 48, 1062 (2012).

  36. 36.

    K. Sun, Z.-D. Zhang, R.-H. Fan, M. Chen, C.-B. Cheng, Q. Hou, X.-H. Zhang, and Y. Liu, RSC Adv. 5, 61155 (2015).

  37. 37.

    B. Zhao, C. Zhao, R. Li, S.M. Hamidinejad, and C.B. Park, ACS Appl. Mater. Interfaces 9, 20873 (2017).

  38. 38.

    S. Biswas, G.P. Kar, and S. Bose, A.C.S. Appl. Mater. Interfaces 7, 25448 (2015).

  39. 39.

    F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong, C.M. Koo, and Y. Gogotsi, Science 353, 1137 (2016).

  40. 40.

    K. Singh, A. Ohlan, V.H. Pham, R. Balasubramanjyan, S. Varshney, J. Jang, S.H. Hur, W.M. Choi, M. Kumar, S.K. Dhawan, B.S. Kong, and J.S. Chung, Nanoscale 5, 2411 (2013).

  41. 41.

    K. Yao, J. Gong, N. Tian, Y. Lin, X. Wen, Z. Jiang, H. Na, and T. Tang, RSC Adv. 5, 31910 (2015).

  42. 42.

    W.-L. Song, X.-T. Guan, L.-Z. Fan, W.-Q. Cao, C.-Y. Wang, Q.-L. Zhao, and M.-S. Cao, J. Mater. Chem. A 3, 2097 (2015).

  43. 43.

    M. Mishra, A.P. Singh, B.P. Singh, V.N. Singh, and S.K. Dhawan, J. Mater. Chem. A 2, 13159 (2014).

  44. 44.

    A.P. Singh, M. Mishra, D.P. Hashim, T.N. Narayanan, M.G. Hahm, P. Kumar, J. Dwivedi, G. Kedawat, A. Gupta, B.P. Singh, A. Chandra, R. Vajtai, S.K. Dhawan, P.M. Ajayan, and B.K. Gupta, Carbon 85, 79 (2015).

  45. 45.

    M. Bayat, H. Yang, F.K. Ko, D. Michelson, and A. Mei, Polymer 55, 936 (2014).

  46. 46.

    B. Shen, W. Zhai, M. Tao, J. Ling, and W. Zheng, ACS Appl. Mater. Interfaces 5, 11383 (2013).

  47. 47.

    W. Chen, J. Wang, B. Zhang, Q. Wu, and X. Su, Mater. Res. Express 4, 126303 (2017).

  48. 48.

    H. Zhang, G. Zhang, J. Li, X. Fan, Z. Jing, J. Li, and X. Shi, Compos. Part A 100, 128 (2017).

Download references

Author information

Correspondence to Subodh Ganesanpotti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lalan, V., Ganesanpotti, S. Broadband Electromagnetic Response and Enhanced Microwave Absorption in Carbon Black and Magnetic Fe3O4 Nanoparticles Reinforced Polyvinylidenefluoride Composites. Journal of Elec Materi 49, 1666–1676 (2020). https://doi.org/10.1007/s11664-019-07635-3

Download citation

Keywords

  • EMI shielding
  • solution mixing and coagulation
  • interfacial polarization
  • synergistic interaction