Advertisement

Effect of Chemical Additives in the Plating Bath on Surface Corrosion Resistance of Ni(P)

  • C. Y. Wu
  • Y. H. Chen
  • Y. K. Tang
  • E. J. Lin
  • Y. X. Lin
  • J. Y. Wang
  • W. X. Zhuang
  • C. H. Lee
  • C. Y. Chiu
  • C. Y. Yeh
  • C. Y. Hsiao
  • M. L. Cheng
  • A. L. Liu
  • C. Y. LiuEmail author
TMS2019 Microelectronic Packaging, Interconnect, and Pb-free Solder
  • 7 Downloads
Part of the following topical collections:
  1. TMS2019 Advanced Microelectronic Packaging, Emerging Interconnection Technology, and Pb-free Solder

Abstract

In this work, the effect of the chemical additives (surfactant, stabilizer) on the corrosion resistance of the Ni(P) layer was investigated. The average O content at the depth of 1 nm of the tested Ni(P) specimens was used as the indication of the corrosion degree for the tested Ni(P) specimen. The average O content at the depth of 1 nm of the tested Ni(P) specimens prepared with thiourea is 27.74 at.%, which is larger than the average O content (14.43 at.%) at the depth of 1 nm of the corrosion-tested Ni(P) layer. It can be concluded that the corrosion resistance of the Ni(P) layer would be greatly reduced two times with adding thiourea in the Ni(P) plating bath. The effect of the solder mask was also investigated on the corrosion resistance of the Ni(P) layer. We found that S impurities leaching from the solder mask might be co-deposited into Ni(P), and decrease the corrosion resistance of the Ni(P) layer. Yet, its influence is relatively lower than the effect of thiourea on the corrosion resistance of the Ni(P) layer. With adding CTAB, as a surfactant, in the Ni(P) plating bath, the average P content in the Ni(P) layer increases. The high P content further improves the corrosion resistance of the Ni(P) layer. Moreover, the positive effect of adding CTAB in the plating solution on the corrosion resistance of the Ni(P) layer would suppress the negative effect of the thiourea additive and solder mask in the plating solution. The main innovation finding of the work is that we found that adding CTAB in the Ni(P) plating solution can reduce the co-deposition of S impurities, from thiourea in the Ni(P) plating bath and the solder mask, in the Ni(P) layer. Consequently, the corrosion resistance of the Ni(P) layer can be further improved.

Keywords

Electroless nickel thiourea solder mask corrosion electron spectroscopy for chemical analysis (ESCA) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We thank the financial support from Taiwan Uyemura Co., LTD, programs MOST 107-2221-E-008-042-MY3 and MOST 105-2221-E-008-104-MY3. The financial support and information consultancy of ENIG development trends provided by Taiwan Uyemura Co., LTD are greatly appreciated.

References

  1. 1.
    A. Brenner and G.E. Riddell, Proc. Am. Eletropl. Soc. 33, 16 (1946).Google Scholar
  2. 2.
    M. Palaniappa and S.K. Seshadri, Wear 265, 735 (2008).CrossRefGoogle Scholar
  3. 3.
    M. Yan, H.G. Ying, and T.Y. Ma, Surf. Coat. Technol. 202, 5909 (2008).CrossRefGoogle Scholar
  4. 4.
    Y.-C. Lin, K.-J. Wang, and J.-G. Duh, J. Electron. Mater. 39, 283 (2010).CrossRefGoogle Scholar
  5. 5.
    W.H. Zhu, L. Xu, J.H.L. Pang, X.R. Zhang, E. Poh, Y.F. Sun, A.Y.S. Sun, C.K. Wang, H.B. Tan, IEEE 1667 (2008).Google Scholar
  6. 6.
    R.M. Allen and J.B. Van der Sand, Scripta Metall. Mater. 16, 1161 (1982).CrossRefGoogle Scholar
  7. 7.
    D. Mukherjee and C. Rajagopal, Met. Finish. 90, 15 (1992).Google Scholar
  8. 8.
    J. Wojewoda-Budka, Z. Huber, L. Litynska-Dobrzynska, N. Sobczak, and P. Zieba, Mater. Chem. Phys. 139, 276 (2013).CrossRefGoogle Scholar
  9. 9.
    G.O. Mallory, J.B. Hajdu, Electroless Plating: Fundamentals and Applications. William Andrew, 1990.Google Scholar
  10. 10.
    W.J. Cheong, B.L. Luan, and D.W. Shoesmith, Appl. Surf. Sci. 229, 282 (2004).CrossRefGoogle Scholar
  11. 11.
    K. Zeng, R. Stierman, D. Abbott, and M. Murtuza, IEEE, 1111 (2006).Google Scholar
  12. 12.
    K.-L. Lin and J.-W. Hwang, Mater. Chem. Phys. 76, 204 (2002).CrossRefGoogle Scholar
  13. 13.
    I. Baskaran, T.S.N.S. Narayanan, and A. Stephen, Mater. Chem. Phys. 99, 117 (2006).CrossRefGoogle Scholar
  14. 14.
    B.-H. Chen, L. Hong, Y. Ma, and T.-M. Ko, Ind. Eng. Chem. Res. 41, 2668 (2002).CrossRefGoogle Scholar
  15. 15.
    R. Elansezhian, B. Ramamoorthy, and P.K. Nair, Surf. Coat. Technol. 203, 709 (2008).CrossRefGoogle Scholar
  16. 16.
    A. Małecki and A. Micek-Ilnicka, Surf. Coat. Technol. 123, 72 (2000).CrossRefGoogle Scholar
  17. 17.
    Satoru Ando, Takeshi Suzuki, and Kingo Itaya, J. Electroanal. Chem. 412, 139 (1996).CrossRefGoogle Scholar
  18. 18.
    J. Kivel and J.S. Sallo, J. Electrochem. Soc. 112, 1201 (1965).CrossRefGoogle Scholar
  19. 19.
    L. Das and D.T. Chin, Plat. Surf. Finish. 83, 55 (1996).Google Scholar
  20. 20.
    I.V. Petukhov and M.G. Shcherban’, Prot. Met. Phys. Chem. Surf. 35, 566 (1999).Google Scholar
  21. 21.
    P. Marcus, Corrosion Mechanisms in Theory and Practice, 3rd ed. (Boca Raton: CRC Press, 2011), pp. 395–417.CrossRefGoogle Scholar
  22. 22.
    B. Elsener, M. Crobu, and M.A. Scorciapino, J. Appl. Electrochem. 38, 1053 (2008).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • C. Y. Wu
    • 1
  • Y. H. Chen
    • 1
  • Y. K. Tang
    • 1
  • E. J. Lin
    • 1
  • Y. X. Lin
    • 1
  • J. Y. Wang
    • 1
  • W. X. Zhuang
    • 1
  • C. H. Lee
    • 1
  • C. Y. Chiu
    • 1
  • C. Y. Yeh
    • 1
  • C. Y. Hsiao
    • 2
  • M. L. Cheng
    • 2
  • A. L. Liu
    • 2
  • C. Y. Liu
    • 1
    Email author
  1. 1.Department of Chemical Engineering and Materials EngineeringNational Central UniversityJhong-LiTaiwan
  2. 2.Taiwan Uyemura Co., LTDTaoyuanTaiwan

Personalised recommendations