Advertisement

Thermal and Temporal Properties of a Thin Layer of Bromo Indium Phthalocyanine Nanostructures

  • Mohammad Esmaeil Azim Araghi
  • Marzieh AkbariEmail author
Article
  • 5 Downloads

Abstract

In this work, we report on the synthesis, fabrication, and electrical and optical characterization of sandwich devices of bromo indium phthalocyanine thin film nanostructures in aluminum electrodes using electron beam evaporation in a high vacuum which have the potential to be used for sensing applications. We investigate the influence of both parameters of temperature and frequency on the conduction mechanism to determine the transport process in the carriers. Results demonstrate that the capacitance, dielectric constant and loss factor decrease with increasing the frequency and increase in high temperatures. The behavior of capacitance and loss factor fits well with the model of Goswami and Goswami and the results imply the domination of hopping theory. In addition, analysis of the absorption spectrum indicates that the optical band gap energy is 3 eV. Furthermore, morphological analysis demonstrates that all films have a smooth surface with homogeneous small crystal grains with a nanoscale size order of 40 ± 10 nm. Thus, temperature and frequency-dependent experiments of optical and electrical parameters of the bromo indium phthalocyanine thin film nanostructures show their potential to be employed for sensing applications.

Keywords

Electrical properties morphology optical material and properties thin films phthalocyanine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    T.P. Hülser, H. Wiggers, F.E. Kruis, and A. Lorke, Sensors Actuators B Chem. 109, 13 (2005).CrossRefGoogle Scholar
  2. 2.
    K.H. An, S.Y. Jeong, H.R. Hwang, and Y.H. Lee, Adv. Mater. 16, 1005 (2004).CrossRefGoogle Scholar
  3. 3.
    S. Meshitsuka, M. Ichikawa, and K. Tamaru, J. Chem. Soc., Chem. Commun. 5, 158 (1974).CrossRefGoogle Scholar
  4. 4.
    J. Jianzhuang, Functional Phthalocyanine Molecular Materials (Berlin: Springer, 2010).CrossRefGoogle Scholar
  5. 5.
    S.K. Md. Obaidulla, D.K. Goswami, and P.K. Giri, Appl. Phys. Lett. 104, 213302 (2014).CrossRefGoogle Scholar
  6. 6.
    F.-L. Zhang, Q. Huang, J.-Y. Liu, M.-D. Huang, and J.-P. Xue, ChemMedChem 10, 312 (2015).CrossRefGoogle Scholar
  7. 7.
    Z. Li, F. Gao, Z. Xiao, X. Wu, J. Zuo, and Y. Song, Opt. Laser Technol. 103, 42 (2018).CrossRefGoogle Scholar
  8. 8.
    R. Tamura, T. Kawata, Y. Hattori, N. Kobayashi, and M. Kimura, Macromolecules 50, 7978 (2017).CrossRefGoogle Scholar
  9. 9.
    J.W.M. Chon, T.S. Kao, H.W. Hsu, Y.H. Fu, C. Bullen, D.P. Tsai, and M. Gu, Jpn. J. Appl. Phys. 46, 3952 (2007).CrossRefGoogle Scholar
  10. 10.
    M.J. Jafari, M.E. Azim-Araghi, and S. Barhemat, J. Mater. Sci. 47, 1992 (2012).CrossRefGoogle Scholar
  11. 11.
    A.C. Varghese and C.S. Menon, J. Mater. Sci. Mater. Electron. 17, 149 (2006).CrossRefGoogle Scholar
  12. 12.
    A. Napier and R.A. Collins, Phys. Status Solidi (a) 144, 91 (1994).CrossRefGoogle Scholar
  13. 13.
    A. Hadri, A. El Hat, M. Sekkati, and A. Mzerd, Phys. Status Solidi (c) 14, 1700189 (2017).Google Scholar
  14. 14.
    V.T. Vadakel and C.S. Menon, Mater. Sci. Pol. 31, 391 (2013).CrossRefGoogle Scholar
  15. 15.
    R. Bhargava, P.K. Sharma, S. Singh, M. Sahni, A.C. Pandey, and N. Kumar, J. Mater. Sci. Mater. Electron. 25, 552 (2014).CrossRefGoogle Scholar
  16. 16.
    S. Krishnakumar and C.S. Menon, Phys. Status Solidi 153, 439 (1996).CrossRefGoogle Scholar
  17. 17.
    N.A. Bakr, S.A. Salman, and A.M. Shano, Int. Lett. Chem. Phys. Astron. 41, 15 (2015).CrossRefGoogle Scholar
  18. 18.
    S. Pourteimoor and M.E. Azim-Araghi, Mater. Sci. Semicond. Process. 18, 97 (2014).CrossRefGoogle Scholar
  19. 19.
    A. El-ghandour, M.F.O. Hameed, and S.S.A. Obayya, J. Mater. Sci. Mater. Electron. 29, 17750 (2018).CrossRefGoogle Scholar
  20. 20.
    A. Goswami and A.P. Goswami, Thin Solid Films 16, 175 (1973).CrossRefGoogle Scholar
  21. 21.
    A.M. Saleh, S.M. Hraibat, R.-L. Kitaneh, M.M. Abu-Samreh, and S.M. Musameh, J. Semicond. 33, 082002 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Faculty of PhysicsKharazmi UniversityTehranIran
  2. 2.Faculty of PhysicsUniversity of Science and Technology of IranTehranIran

Personalised recommendations