Advertisement

Dependence of Photovoltaic Properties of Spray-Pyrolyzed F-Doped SnO2 Thin Film on Spray Solution Preparation Method

  • A. TarighiEmail author
  • A. Mashreghi
Article
  • 1 Downloads

Abstract

Spray pyrolysis deposition of SnCl2.2H2O- and NH4F-containing solution is an appropriate method for deposition of fluorine-doped tin oxide (FTO), which has extensive applications in photovoltaic devices. According to a literature review, several spray preparation methods have been studied. These methods lead to both precipitated and unprecipitated spray solutions. Precipitated and unprecipitated solutions were used for deposition of FTO thin films. FTO obtained from unprecipitated solution yielded the lowest sheet resistance and resistivity, which was due to its highest electron concentration (ne). However, precipitation had no influence on electron mobility. The x-ray diffraction patterns of precipitates showed the presence of Sn- and F-containing compounds, which implied partial depletion of F and Sn from solutions. As a result, a lower amount of F ions was incorporated into FTO, which led to lower ne. In addition, partial depletion of Sn led to slightly smaller FTO thickness. Finally, FTO thin film deposited from unprecipitated solution gave the highest figure of merit. This means that precipitation in the precursor solution has deleterious effects on electrical and optical properties.

Keywords

Fluorine-doped tin oxide spray pyrolysis deposition transparent conducting oxide thin film 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research was financially supported by the Iran National Science Foundation (INSF) (Grant No. 93011385) and Shiraz University of Technology. The authors are grateful for this support.

References

  1. 1.
    G. Turgut, J. Electron. Mater. 47, 4149 (2018).CrossRefGoogle Scholar
  2. 2.
    M. Oshima and K. Yoshino, J. Electron. Mater. 39, 819 (2010).CrossRefGoogle Scholar
  3. 3.
    D. Jimenez-Olarte, O. Vigil-Galan, J.D.L. Rosa, D. Seuret-Jimenez, and G. Contreras-Puente, Rev. Mex. Fis. 61, 160 (2015).Google Scholar
  4. 4.
    D. Tatar and B. DÜzgÜn, Pramana 79, 137 (2012).CrossRefGoogle Scholar
  5. 5.
    Z.Y. Banyamin, P.J. Kelly, G. West, and J. Boardman, Coatings 4, 732 (2014).CrossRefGoogle Scholar
  6. 6.
    L. Zheng, G. Cheng, J. Chen, L. Lin, J. Wang, Y. Liu, H. Li, and Z.L. Wang, Adv. Energy Mater. 5, 1501152 (2015).CrossRefGoogle Scholar
  7. 7.
    J. Chen and Z.L. Wang, Joule 1, 480 (2017).CrossRefGoogle Scholar
  8. 8.
    Z. Lin, J. Chen, and J. Yang, J. Nanomater. 2016, 5651613 (2016).Google Scholar
  9. 9.
    W. Yang, Z. Liu, J. Chen, L. Huang, L. Zhang, H. Pan, B. Wu, and Y. Lin, Sci. Rep. 5, 10460 (2015).CrossRefGoogle Scholar
  10. 10.
    J. Chen, Y. Huang, N. Zhang, H. Zou, R. Liu, C. Tao, X. Fan, and Z.L. Wang, Nat. Energy 1, 16138 (2016).CrossRefGoogle Scholar
  11. 11.
    N. Zhang, J. Chen, Y. Huang, W. Guo, J. Yang, J. Du, and X. Fan, Adv. Mater. 28, 263 (2016).CrossRefGoogle Scholar
  12. 12.
    Y. Su, G. Xie, J. Chen, H. Du, H. Zhang, Z. Yuan, Z. Ye, X. Du, H. Tai, and Y. Jiang, RSC Adv. 6, 97840 (2016).CrossRefGoogle Scholar
  13. 13.
    N. Zhang, C. Tao, X. Fan, and J. Chen, J. Mater. Res. 32, 1628 (2017).CrossRefGoogle Scholar
  14. 14.
    S. Tamura, T. Ishida, H. Magara, T. Mihara, O. Tabata, and T. Tatsuta, Thin Solid Films 343–344, 142 (1999).CrossRefGoogle Scholar
  15. 15.
    T.H. Fang and W.J. Chang, Appl. Surf. Sci. 220, 175 (2003).CrossRefGoogle Scholar
  16. 16.
    A.P. Rizzato, L. Broussous, C.V. Santilli, S.H. Pulcinelli, and A.F. Craievich, J. Non-Cryst. Solids 284, 61 (2001).CrossRefGoogle Scholar
  17. 17.
    C.H. Han, S.D. Han, J. Gwak, and S.P. Khatkar, Mater. Lett. 61, 1701 (2007).CrossRefGoogle Scholar
  18. 18.
    I.H. Kim, J.H. Ko, D. Kim, K.S. Lee, T.S. Lee, J.H. Jeong, B. Cheong, Y.J. Baik, and W.M. Kim, Thin Solid Films 515, 2475 (2006).CrossRefGoogle Scholar
  19. 19.
    Y.H. Choi and S.H. Hong, Sens. Actuators B 125, 504 (2007).CrossRefGoogle Scholar
  20. 20.
    N.M. Nguyen, M.Q. Luu, M.H. Nguyen, D.T. Nguyen, V.D. Bui, T.T. Truong, V.T. Pham, and T. Nguyen-Tran, J. Electron. Mater. 46, 3667 (2017).CrossRefGoogle Scholar
  21. 21.
    F.A. Sabah, N.M. Ahmed, and Z. Hassan, J. Electron. Mater. 46, 218 (2017).CrossRefGoogle Scholar
  22. 22.
    R.S. Kate, S.C. Bulakhe, and R.J. Deokate, J. Electron. Mater. (2019). http://dx.doi.org/10.1007/s11664-019-07074-0.Google Scholar
  23. 23.
    E. Elangovan, M.P. Singh, M.S. Dharmaprakash, and K. Ramamurthi, J. Optoelectron. Adv. Mater. 6, 197 (2004).Google Scholar
  24. 24.
    V.D.L. Garza-Guadarrama and A. Sanchez-Juarez, J. Mater. Sci. Lett. 20, 219 (2001).CrossRefGoogle Scholar
  25. 25.
    G. Gordillo, L.C. Moreno, W.D.L. Cruz, and P. Teheran, Thin Solid Films 252, 61 (1994).CrossRefGoogle Scholar
  26. 26.
    A. Smith, J.-M. Laurent, D.S. Smith, J.-P. Bonnet, and R.R. Clemente, Thin Solid Films 266, 20 (1995).CrossRefGoogle Scholar
  27. 27.
    R. Buntem, P. Kraisingdecha, and W. Sadee, Adv. Mater. Res. 55–57, 513 (2008).CrossRefGoogle Scholar
  28. 28.
    E. Elangovan and K. Ramamurthi, Thin Solid Films 476, 231 (2005).CrossRefGoogle Scholar
  29. 29.
    B. Russo and G.Z. Cao, Appl. Phys. A Mater. Sci. Process. 90, 311 (2008).CrossRefGoogle Scholar
  30. 30.
    E.V.A. Premalal, N. Dematage, S. Kaneko, and A. Konno, Thin Solid Films 520, 6813 (2012).CrossRefGoogle Scholar
  31. 31.
    D.C. Woo, C.Y. Koo, H.C. Ma, and H.Y. Lee, Trans. Electr. Electron. Mater. 13, 241 (2012).CrossRefGoogle Scholar
  32. 32.
    M. Batzill and U. Diebold, Prog. Surf. Sci. 79, 47 (2005).CrossRefGoogle Scholar
  33. 33.
    D.R. Acosta, E.P. Zironi, E. Montoya, and W. Estrada, Thin Solid Films 288, 1 (1996).CrossRefGoogle Scholar
  34. 34.
    T. Fukano and T. Motohiro, Sol. Energy Mater. Sol. Cells 82, 567 (2004).Google Scholar
  35. 35.
    A. Tucic, Z.V. Marinkovic, L. Mancic, M. Cilense, and O. Miloševic, J. Mater. Process. Technol. 143–144, 41 (2003).CrossRefGoogle Scholar
  36. 36.
    C. Terrier, J.P. Chatelon, R. Berjoan, and J.A. Roger, Thin Solid Films 263, 37 (1995).CrossRefGoogle Scholar
  37. 37.
    D. Tatar, G. Turgut, and B. DÜzgÜn, Rom. J. Phys. 58, 143 (2013).Google Scholar
  38. 38.
    M. Miki-Yoshida and E. Andrade, Thin Solid Films 224, 87 (1993).CrossRefGoogle Scholar
  39. 39.
    P. Ravikumar, K. Ravichandran, and B. Sakthivel, J. Mater. Sci. Technol. 28, 999 (2012).CrossRefGoogle Scholar
  40. 40.
    C. Hudaya, J.H. Park, and J.K. Lee, Nanoscale Res. Lett. 7, 17 (2012).CrossRefGoogle Scholar
  41. 41.
    S.O. Kasap, Principles of electronic materials and devices, 3rd ed. (Singapore: McGraw-Hill, 2006), p. 380.Google Scholar
  42. 42.
    A.V. Moholkar, S.M. Pawar, K.Y. Rajpure, P.S. Patil, and C.H. Bhosale, J. Phys. Chem. Solids 68, 1981 (2007).CrossRefGoogle Scholar
  43. 43.
    K.K. Purushothaman, M. Dhanasankar, and G. Muralidharan, Surf. Rev. Lett. 14, 1149 (2007).CrossRefGoogle Scholar
  44. 44.
    G. Haacke, J. Appl. Phys. 47, 4086 (1976).CrossRefGoogle Scholar
  45. 45.
    G.C. Morris and A.E. McElnea, Appl. Surf. Sci. 92, 167 (1996).CrossRefGoogle Scholar
  46. 46.
    A. Purwanto, H. Widiyandari, and A. Jumari, Thin Solid Films 520, 2092 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringShiraz University of TechnologyShirazIran

Personalised recommendations