Advertisement

High-Performance Organic Field-Effect Transistors Fabricated with High-k Composite Polymer Gel Dielectrics

  • Arif KösemenEmail author
Article
  • 8 Downloads

Abstract

This study presents a composite gel-like dielectric material for organic field-effect transistors (OFET) applications. Poly(methyl methacrylate) (PMMA) gelled with propylene carbonate was used as gel dielectric material. Copper phthalocyanine was used as active layer in the OFET structures. In order to enhance the performance of the PMMA-gel dielectric material, silicium dioxide (SiO2) was used as an additive material. Various ratios of SiO2 were added to the gel dielectric and the effect of SiO2 on the OFET performance was investigated. It was clearly observed that SiO2 enhanced the performance and source-drain current of the fabricated OFETs. SiO2 was added to the PMMA-gel with different doping ratios of 0%, 10%, 30%, 50% and 100% by using a solution-processing method. The dielectric properties of the PMMA-gel:SiO2 composite materials were analyzed with impedance spectroscopy in terms of their effective capacitance ©I), tangent factor (tan(δ)), phase angle and complex dielectric constant (ε′ and ε″). The hole mobility of the OFETs was enhanced by 50% SiO2 nanoparticles in PMMA-gel dielectric materials from 6.83 × 10−1 cm2 V−1 s−1 to 4.66 × 100 cm2 V−1 s−1 (at VDS = − 0.5 V). The time-dependent IDS curves were analyzed for OFETs fabricated with PMMA-gel:SiO2 composite dielectric layers. It was found that all the devices worked stably under bias stress and gave fast responses for all gate voltages.

Keywords

PMMA-gel gate dielectric materials organic electronics thin-film transistors composite dielectrics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    T.W. Kelley, P.F. Baude, C. Gerlach, D.E. Ender, D. Muyres, M.A. Haase, D.E. Vogel, and S.D. Theiss, Chem. Mater. 16, 4422 (2004).CrossRefGoogle Scholar
  2. 2.
    H.E. Katz and J. Huang, Annu. Rev. Mater. Res. 39, 71 (2009).CrossRefGoogle Scholar
  3. 3.
    M. Li, K. Gao, X. Wan, Q. Zhang, B. Kan, R. Xia, F. Liu, X. Yang, H. Feng, W. Ni, Y. Wang, J. Peng, H. Zhang, Z. Liang, H.-L. Yip, X. Peng, Y. Cao, and Y. Chen, Nat. Photonics 11, 85 (2017).CrossRefGoogle Scholar
  4. 4.
    A. Korkmaz, A. Cetin, E. Kaya, and E. Erdoğan, J. Polym. Res. 25, 178 (2018).CrossRefGoogle Scholar
  5. 5.
    K. Gao, J. Miao, L. Xiao, W. Deng, Y. Kan, T. Liang, C. Wang, F. Huang, J. Peng, Y. Cao, F. Liu, T.P. Russell, H. Wu, and X. Peng, Adv. Mater. 28, 4727 (2016).CrossRefGoogle Scholar
  6. 6.
    K. Gao, S.B. Jo, X. Shi, L. Nian, M. Zhang, Y. Kan, F. Lin, B. Kan, B. Xu, Q. Rong, L. Shui, F. Liu, X. Peng, G. Zhou, Y. Cao, and A.K.-Y. Jen, Adv. Mater. 31, 1807842 (2019).CrossRefGoogle Scholar
  7. 7.
    J. Veres, S. Ogier, G. Lloyd, and D. De Leeuw, Chem. Mater. 16, 4543 (2004).CrossRefGoogle Scholar
  8. 8.
    B.L. Hu, K. Zhang, C. An, W. Pisula, and M. Baumgarten, Org. Lett. 19, 6300 (2017).CrossRefGoogle Scholar
  9. 9.
    T. Lei, Y. Cao, Y. Fan, C.J. Liu, S.C. Yuan, and J. Pei, J. Am. Chem. Soc. 133, 6099 (2011).CrossRefGoogle Scholar
  10. 10.
    M.E. Harb, S. Ebrahım, M. Solıman, and M. Shabana, J. Electron. Mater. 47, 353 (2018).CrossRefGoogle Scholar
  11. 11.
    J.H. Choi, Y. Gu, K. Hong, W. Xie, C.D. Frisbie, and T.P. Lodge, Appl. Mater. Interfaces 6, 19275 (2014).CrossRefGoogle Scholar
  12. 12.
    J.H. Cho, J. Lee, Y. Xia, B. Kim, Y. He, M.J. Renn, T.P. Lodge, and C.D. Frisbie, Nat. Mater. 7, 900–906 (2008).CrossRefGoogle Scholar
  13. 13.
    M.J. Panzer and C.D. Frisbie, Appl. Phys. Lett. 88, 203504 (2006).CrossRefGoogle Scholar
  14. 14.
    H. Shimotani, H. Asanuma, J. Takeya, and Y. Iwasa, Appl. Phys. Lett. 89, 203501 (2006).CrossRefGoogle Scholar
  15. 15.
    W.L. Leong, N. Mathews, B. Tan, S. Vaidyanathan, F. Dötz, and S. Mhaisalkar, J. Mater. Chem. 21, 8971 (2011).CrossRefGoogle Scholar
  16. 16.
    K. Hyung Lee, S. Zhang, T.P. Lodge, and C.D. Frisbie, J. Phys. Chem. B 115, 3315 (2011).CrossRefGoogle Scholar
  17. 17.
    A. Kösemen, S.E. San, M. Okutan, Z. Doğruyol, A. Demir, Y. Yerli, B. Şengez, E. BaŞaran, and F. Yılmaz, Microelectron. Eng. 88, 17 (2011).CrossRefGoogle Scholar
  18. 18.
    C.-T. Liu, W.-H. Lee and J.-F. Su, Act. Passive Electron. Comp. Article ID 2012, 7 (2012).Google Scholar
  19. 19.
    Y. Wang and H. Kim, Org. Electron. 13, 2997 (2012).CrossRefGoogle Scholar
  20. 20.
    Y.-G. Ha, S. Jeong, J. Wu, M.-G. Kim, V.P. Dravid, A. Facchetti, and T.J. Marks, J. Am. Chem. Soc. 132, 17426 (2010).CrossRefGoogle Scholar
  21. 21.
    C. Zhang, H. Wang, Z. Shi, Z. Cui, and D. Yan, Org. Electron. 13, 3302 (2012).CrossRefGoogle Scholar
  22. 22.
    G.C. Choi and B.-S. Bae, Synth. Met. 159, 1288 (2009).CrossRefGoogle Scholar
  23. 23.
    M.D. Morales-Acosta, C.G. Alvarado-Beltrán, M.A. Quevedo-López, B.E. Gnade, A. Mendoza-Galván, and R. Ramírez-Bon, J. Non-Cryst. Solids 362, 124 (2013).CrossRefGoogle Scholar
  24. 24.
    A. Baharı and M. Shahbazı, J. Electron. Mater. 45, 1201 (2016).CrossRefGoogle Scholar
  25. 25.
    D. Morales-Acosta, M. Quevedo-Lopez, B. Gnade, and R. Ramírez-Bon, J. Sol-Gel Sci. Technol. 58, 218 (2011).CrossRefGoogle Scholar
  26. 26.
    B. Soltani and M. Babaeipour, J. Mater. Sci. Mater. Electron. 28, 4378 (2017).CrossRefGoogle Scholar
  27. 27.
    R. Coskun, O. Yalçın, M. Okutan, and M. Öztürk, J. Non-Cryst. Solids 460, 153 (2017).CrossRefGoogle Scholar
  28. 28.
    O. Yalçın, R. Coskun, M. Okutan, and M. Öztürk, J. Phys. Chem. B 117, 8931 (2013).CrossRefGoogle Scholar
  29. 29.
    W.X. Yuan, Solid State Sci. 14, 330 (2012).CrossRefGoogle Scholar
  30. 30.
    C. Arbizzani, M.C. Gallazzi, M. Mastragostino, M. Rossi, and F. Soavi, Electrochem. Commun. 3, 16 (2001).CrossRefGoogle Scholar
  31. 31.
    O. Larsson, E. Said, M. Berggren, and X. Crispin, Adv. Funct. Mater. 19, 3334 (2009).CrossRefGoogle Scholar
  32. 32.
    S. Ramesh, C.W. Liew, and A.K. Arof, J. Non-Cryst. Solids 357, 3654 (2011).CrossRefGoogle Scholar
  33. 33.
    S.F. Mansour, Egypt J. Solids 28, 263 (2005).Google Scholar
  34. 34.
    G.B. Rao, P. Rajesh, and P. Ramasamy, Mater. Res. Bull. 60, 709 (2014).CrossRefGoogle Scholar
  35. 35.
    S. Saha, A. Nandy, S.K. Pradhan, and A.K. Meikap, Mater. Res. Bull. 88, 272 (2017).CrossRefGoogle Scholar
  36. 36.
    P. Maji, R.B. Choudhary, and M. Majhi, Optik 127, 4848 (2016).CrossRefGoogle Scholar
  37. 37.
    Z. Alpaslan Kösemen, A. Kösemen, S. öztürk, B. Canımkurbey, and Y. Yerli, Mater. Sci. Semicond. Process. 66, 207 (2017).CrossRefGoogle Scholar
  38. 38.
    S. Ono, K. Miwa, S. Seki, and J. Takeya, Appl. Phys. Lett. 94, 063301 (2009).CrossRefGoogle Scholar
  39. 39.
    A.F. Stassen, R.W.I. de Boer, N.N. Iosad, and A.F. Morpugo, Appl. Phys. Lett. 85, 3899 (2004).CrossRefGoogle Scholar
  40. 40.
    S. Fratini, H. Xie, I.N. Hulea, S. Ciuchi, and A.F. Morpurgo, New J. Phys. 10, 033031 (2008).CrossRefGoogle Scholar
  41. 41.
    S. Baldelli, Acc. Chem. Res. 41, 421 (2008).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of PhysicsMuş Alparslan UniversityMuşTurkey

Personalised recommendations