Effect of Etching Time to Tune Magnetoresistance Between Positive and Negative Values in p-Type Silicon Nanowires

  • B. Ben Abdelaziz
  • M. RadaouiEmail author
  • A. Ben Fredj
  • S. Romdhane
  • C. Ben Alaya
  • M. Bouaïcha
  • H. Bouchriha


Silicon nanowires (SiNWs) are formed by metal-assisted chemical etching of crystalline p-type silicon, in a mixture of aqueous HF and AgNO3 chemical solutions. The magnetic field effects on the current of Ag/SiNWs/Si/Al structures have been studied. At room temperature, magnetoresistance (MR) measurements revealed positive and negative MR depending on the etching time and on the applied voltage. Huge positive MR of about 1200% has been observed at the low field. The negative MR is attributed to the weak localization effect, while the positive one is related to the ohmic regime, where holes control the current. The MR effect depends on the applied voltage and on the SiNWs length. The huge MR effect on SiNWs can be exploited in magnetic-field sensor devices.


Silicon nanowires huge magnetoresistance p-type silicon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    H. Sellier, C.J. Lansbergen, and S. Rogge, Phys. Rev. Lett. 97, 206805 (2006).CrossRefGoogle Scholar
  2. 2.
    C.M. Lieber, MRS Bull. 28, 486–491 (2003).CrossRefGoogle Scholar
  3. 3.
    C. Thelander, P. Agarwal, S. Brongersma, J. Eymery, L.F. Feiner, A. Forchel, M. Scheffler, W. Riess, B.J. Ohlsson, U. Gösele, and L. Samuelson, Mater. Today 9, 28–35 (2006).CrossRefGoogle Scholar
  4. 4.
    F. Qian, S. Gradecak, Y. Li, C.Y. Wen, and C.M. Lieber, Nano Lett. 5, 2287–2291 (2005).CrossRefGoogle Scholar
  5. 5.
    T. Bryllert, L.E. Wernersson, L.E. Froberg, and L. Samuelson, IEEE Electron Device Lett. 27, 323–325 (2006).CrossRefGoogle Scholar
  6. 6.
    D. Liang, J. Du, and X.P.A. Gao, Mater. Sci. Technol. 31, 1–14 (2015).CrossRefGoogle Scholar
  7. 7.
    Z. Fan, J.C. Ho, Z.A. Jacobson, R. Yerushalmi, R.L. Alley, H. Razavi, and A. Javey, Nano Lett. 8, 20–25 (2008).CrossRefGoogle Scholar
  8. 8.
    S. Nadj-Perge, S. Frolov, E. Bakkers, and L. Kouwenhoven, Nature 468, 1084–1087 (2010).CrossRefGoogle Scholar
  9. 9.
    Q. Wan, Q. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, and C.L. Lin, Appl. Phys. Lett. 84, 3654 (2004).CrossRefGoogle Scholar
  10. 10.
    D.J. Lockwood, Z.H. Lu, and J.M. Baribeau, Phys. Rev. Lett. 76, 539–541 (1996).CrossRefGoogle Scholar
  11. 11.
    Y. Huang, X. Duan, Y. Cui, L.J. Lauhon, K.H. Kim, and C.M. Lieber, Science 294, 1313–1317 (2001).CrossRefGoogle Scholar
  12. 12.
    V. Schmidt, H. Riel, S. Senz, S. Karg, W. Riess, and U. Gösele, Small 2, 85–88 (2006).CrossRefGoogle Scholar
  13. 13.
    J. Goldberger, A.I. Hochbaum, R. Fan, and P. Yang, Nano Lett. 6, 973–977 (2006).CrossRefGoogle Scholar
  14. 14.
    Y.F. Lin, J. Song, Y. Ding, S.Y. Lu, and Z.L. Wang, Adv. Mater. 20, 3127–3130 (2008).CrossRefGoogle Scholar
  15. 15.
    H. Angermann, W. Henriona, M.A. Rebien, K. Kliefoth, D. Fischer, and J.-T. Zettler, Microelectron. Eng. 36, 43–46 (1997).CrossRefGoogle Scholar
  16. 16.
    A.M. Morales and C.M. Lieber, Science 279, 208–211 (1998).CrossRefGoogle Scholar
  17. 17.
    P.W. Leu, B. Shan, and K. Cho, Phys. Rev. B 73, 195320 (2006).CrossRefGoogle Scholar
  18. 18.
    H. Peelaers, B. Partoens, and F.M. Peeters, Nano Lett. 6, 2781–2784 (2006).CrossRefGoogle Scholar
  19. 19.
    R. Rurali, A. Poissier, and N. Lorente, Phys. Rev. B 74, 165324 (2006).CrossRefGoogle Scholar
  20. 20.
    R. Rurali, Rev. Mod. Phys. 28, 427 (2010).CrossRefGoogle Scholar
  21. 21.
    B. Legrand, D. Deresmes, and D. Stiévenard, J. Vac. Sci. Technol. B 20, 862–870 (2002).CrossRefGoogle Scholar
  22. 22.
    B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C.M. Lieber, Nature 449, 885–889 (2007).CrossRefGoogle Scholar
  23. 23.
    E. Akkermans and G. Montambaux, Physique mésoscopique des électrons et des photons (EDP Sciences, 2004).Google Scholar
  24. 24.
    B. Chouaibi, A. Benfredj, S. Romdhane, M. Bouaïcha, and H. Bouchriha, Solid State Electron. 79, 60–64 (2013).CrossRefGoogle Scholar
  25. 25.
    M.P. Delmo, S. Kasai, K. Kobayashi, and T. Ono, J. Phys. Conf. Ser. 193, 012001 (2009).CrossRefGoogle Scholar
  26. 26.
    M.P. Delmo, E. Shikoh, T. Shinjo, and M. Shiraishi, Phys. Rev. B 87, 245301 (2013).CrossRefGoogle Scholar
  27. 27.
    H.L. Johnson and H.J. Trodahl, J. Phys. Condens. Matter 7, 1159–1165 (1995).CrossRefGoogle Scholar
  28. 28.
    M. Rodmar, D. Oberschmidt, M. Ahlgren, C. Gignoux, C. Berger, and Ö. Rapp, J. Non Cryst. Solids 250–252, 888–892 (1999).CrossRefGoogle Scholar
  29. 29.
    M. Ahlgren, P. Lindqvist, M. Rodmar, and Ö. Rapp, Phys. Rev. B. 55, 14847 (1997).CrossRefGoogle Scholar
  30. 30.
    B. Chouaibi, M. Radaoui, N. Nafie, A.B. Fredj, S. Romdhane, and H. Bouchriha, J. Cryst. Growth 463, 54–58 (2017).CrossRefGoogle Scholar
  31. 31.
    N. Nafie, C. Braham, M.B. Rabha, and M. Bouaicha, Phys. Status Solidi C 11, 331–336 (2014).CrossRefGoogle Scholar
  32. 32.
    S. Pinilla, G. Mollá, J. L. Pau, and C. Morant, Phys. Status Solidi A. 1–6 (2016).Google Scholar
  33. 33.
    B. Marsen and K. Sattler, Phys. Rev. B 60, 11593–11600 (1999).CrossRefGoogle Scholar
  34. 34.
    M.P. Persson, A. Lherbier, Y.M. Niquet, F. Triozon, and S. Roche, Nano Lett. 8, 4146–4150 (2008).CrossRefGoogle Scholar
  35. 35.
    M. Radaoui, B. Fredj, S. Romdhane, M. Bouaïcha, and H. Bouchriha, Mater. Sci. Eng. B 178, 1416–1421 (2013).CrossRefGoogle Scholar
  36. 36.
    D. K. Schroder, ‘Contact resistance and Schottky barriers’, in Semiconductor Material and Device Characterization, 3rd edn. (Wiley, 1990), pp. 157–158.Google Scholar
  37. 37.
    Ö.F. Yüksel, N. Tuğluoğlu, H. Şafak, and M. KuŞ, J. Appl. Phys. 113, 044507 (2013).CrossRefGoogle Scholar
  38. 38.
    S.M. Sze, Physics of Semiconductor Devices, 2nd ed. (New York: Wiley, 1981).Google Scholar
  39. 39.
    A.W.P. Fung, Z.H. Wang, M.S. Dresselhaus, G. Dresselhaus, and M. Endot, Mat. Res. Soc. Sympos. 328, 793–798 (1994).CrossRefGoogle Scholar
  40. 40.
    D.T. Quan and H. Hbib, Solid-State Electron. 36, 339–344 (1993).CrossRefGoogle Scholar
  41. 41.
    W. den Boer, J. Phys.(Paris) Colloq. 42, C4-451–C4-454 (1981).Google Scholar
  42. 42.
    M.A. Lampert and P. Mark, Current Injection in Solids (New York: Academic Press, 1970).Google Scholar
  43. 43.
    X.D. Chen, C.C. Ling, S. Fung, C.D. Beling, and Y.F. Mei, R.K. Fu, G.G. Siu and P.K. Chu, Appl. Phys. Lett. 88, 132104 (2006).CrossRefGoogle Scholar
  44. 44.
    O.J. Marsh and C.R. Viswanathan, J. Appl. Phys. 38, 3135 (1967).CrossRefGoogle Scholar
  45. 45.
    R.L. Hoffman, J.F. Wagner, M.K. Jayaraj, and J. Tate, J. Appl. Phys. 90, 5763 (2001).CrossRefGoogle Scholar
  46. 46.
    M. Ahlgren, P. Lindqvist, M. Rodmar, and Ö. Rapp, Phys. Rev. B. 55, 14847 (1997).CrossRefGoogle Scholar
  47. 47.
    I.A. Tambasov, K.O. Gornakov, V.G. Myagkov, L.E. Bykova, V.S. Zhigalov, A.A. Matsynin, and E.V. Yozhikova, Phys. B 478, 135–137 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Laboratoire Matériaux Avancés et Phénomènes Quantiques, Faculté des Sciences de TunisUniversité de Tunis El ManarTunisTunisia
  2. 2.Faculté des Sciences de GafsaGafsaTunisia
  3. 3.Faculté des Sciences de BizerteUniversité de CarthageZarzouna, BizerteTunisia
  4. 4.Laboratoire de Photovoltaïque, Centre de Recherches et des Technologies de l’EnergieTechnopole de Borj-CédriaHammam-Lif, TunisTunisia

Personalised recommendations