Advertisement

An Integrated SiGe Based Thermoelectric Generator with Parabolic Trough Collector Using Nano HTF for Effective Harvesting of Solar Radiant Energy

  • Pon Vengatesh Ramamurthi
  • Edward Rajan Samuel NadarEmail author
Article
  • 6 Downloads

Abstract

An integrated thermoelectric generator (TEG) with the parabolic trough collector (PTC) for renewable power generation system has been investigated under different solar irradiations, heat transfer fluids (HTF) and TEG materials. In this research work, the idea of using a TEG for effective heat recovery from a solar collector is implemented in an innovative approach. The heat absorbed from PTC is supplied with the hot junction of the TEG and the cold junction being maintained less than surrounding temperature with cold water using an earthen pot surrounded by a thermocole. The temperature gradient between the hot and cold junction of TEG establishes the amount of power extraction. The high temperature absorption is enhanced by the use of synthetic HTF and nanofluids with nano particles (Alumina, Silica, TiO2 and CuO), which increases the effective harvesting of solar radiant energy. Moreover, the research work focuses to find the most efficient material for the hot and cold part of TEG. Silicon Germanium (SiGe) material for fabrication of TEG is suggested which has good ZT (figure of merit) values and electrical profile as compared to conventional Bismuth Telluride (Bi2Te3) under different solar irradiation conditions has been evaluated. The mathematical modelling of this proposed integrated energy harvesting system has been developed. The modelling and array configuration of TEG has been analysed with conventional Bi2Te3 and proposed SiGe materials. The performance of TEG with a PTC integrated system has been experimentally tested and the obtained results illustrate the better effective harvesting of solar energy for electrical power generation.

Keywords

Bi2Te3 SiGe solar energy parabolic trough collector thermoelectric generator heat transfer fluids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgment

The authors would like to thank the Management and Principal of Mepco Schlenk Engineering College (Autonomous), Sivakasi for providing us the state of art facilities to carry out this proposed research work in the Mepco Research Centre in collaboration with Anna University Chennai, Tamil Nadu, India.

References

  1. 1.
    H. Xi, L. Luo, and G. Fraisse, Renew. Sustain. Energy Rev. 11, 5 (2007).CrossRefGoogle Scholar
  2. 2.
    R. Buehler, S. Yang, J.C. Ordonez, IEEE Conference on Technologies for Sustainability (SusTech) (2016), pp. 68–75.Google Scholar
  3. 3.
    V.E. Dudley, G.J. Kolb, A.R. Mahoney, T.R. Mancini, C.W. Matthews, M. Sloan, and D. Kearney, Test results: SEGS LS-2 solar collector, Report of Sandia National Laboratories (SANDIA-94-1884). Albuquerque 96, 11437 (1994).  https://doi.org/10.2172/70756.Google Scholar
  4. 4.
    R. Forristall, Report No. NREL/TP-550-34169, National Renewable Energy Laboratory, Colorado (2003),  https://doi.org/10.2172/15004820.
  5. 5.
    Soteris Kalogirou, Prog. Energy Combust. Sci. 30, 231–295 (2004).  https://doi.org/10.1016/j.pecs.2004.02.001.CrossRefGoogle Scholar
  6. 6.
    A.T. Moss, D.A. Brosseau, Sandia Natl. Lab. SAND2005-4034. (2005).Google Scholar
  7. 7.
    A.A. Hachicha, I. Rodríguez, R. Capdevila, and A. Oliva, Appl. Energy 111, 11 (2013).CrossRefGoogle Scholar
  8. 8.
    G. Coccia, G. Di Nicola, M. Sotte, Renew. Energy, 74 (2015).Google Scholar
  9. 9.
    Xu Guoying, Wei Chen, Shiming Deng, Xiaosong Zhang, and Sainan Zhao, Nanomaterials 5, 4 (2015).Google Scholar
  10. 10.
    V. Khullar, H. Tyagi, E. Patrick Phelan, P. Todd Otanicar, H. Singh, A. Robert Taylor, J. Nanotechnol. Eng. Med. 3, 3 (2013).Google Scholar
  11. 11.
    D.C. Ginnings, and R. Corruccini, J. Res. Natl. Bureau Stand. 38 (1947).Google Scholar
  12. 12.
    A. Robert Taylor, E. Patrick Phelan, P. Todd Otanicar, A. Chad Walker, M. Nguyen, S. Trimble, R. Prasher, J. Renew. Sustain. Eng. 3, 2 (2011).Google Scholar
  13. 13.
    A.K. Singh, Defence Sci. J. 58, 5 (2008).Google Scholar
  14. 14.
    T.M. Tritt, Ann. Rev. Mater. Res. 41 (2011).Google Scholar
  15. 15.
    J. Sootsman, Angew Chem Int Ed Eng 48, 46 (2009).Google Scholar
  16. 16.
    V. Semenyuk, International Conference on Thermoelectrics, ICT, Proceedings. (2001) pp. 391–396.  https://doi.org/10.1109/ict.2001.979914.
  17. 17.
    V. Semenyuk, International Conference on Thermoelectrics, ICT, Proceedings, 58, (2006), pp. 1–21.Google Scholar
  18. 18.
    H. Zhang, Int. J. Refrig 33, 6 (2010).Google Scholar
  19. 19.
    H. Lee, Appl. Energy. 106 (2013).Google Scholar
  20. 20.
    K.P.V.B. Kobbekaduwa and N.D. Subasinghe, Int. J. Energy Power Eng. 5, 3 (2016).Google Scholar
  21. 21.
    Ngendahayoaimable, The University of Agder, (2017).Google Scholar
  22. 22.
    M. Singh, S. Kumar Bhukesh, R. Vaishnava, J. Electric. Electron. Eng. 10, 3 (2015).Google Scholar
  23. 23.
    A. Montecucco, J. Siviter, A.R. Knox, Appl. Energy. 123 (2014).Google Scholar
  24. 24.
    R. Thankakan and E.R.S. Nadar, Int. J. Energ. Res. 42, 6 (2018).CrossRefGoogle Scholar
  25. 25.
    A. Mohammed, A.B. Sapit, H. Balla, A. Mohmmed Hayder, and A. Al-Shamani, ARPN J. Eng. Appl. Sci. 13 (2018).Google Scholar
  26. 26.
    G.D. Raithby Hollands, Kenneth, Adv. Heat. Transfer. 11 (1975).Google Scholar
  27. 27.
    L. Xu, Z. Wang, X. Li Guofeng Yuan, F. Sun, and D. Lei, Sol. Energy. 95 (2013).Google Scholar
  28. 28.
    A.A. Hachicha, I. Rodríguez, R. Capdevila, A. Oliva, Appl. Energy. 111 (2013).Google Scholar
  29. 29.
    E. Álvarez Regueiro, J.P. Vallejo, J. FernÁndez-Seara, L. Lugo, Nanomaterials, 9(2) (2019)Google Scholar
  30. 30.
    M. Guptaa, V. Singha, R. Kumara, Z. Saidb, Renewab. Sustainab. Energy Rev. 74 (2017).Google Scholar
  31. 31.
    S.P. Jang, S.U.S. Choi, Appl. Phys. Letter, 84 (2004).Google Scholar
  32. 32.
    A. Rahman, K.M. Aung, K. Saifullah, M. Rahman, Int. J. Adv. Appl. Sci. 4, 5 (2017)Google Scholar
  33. 33.
    C.M. Bhandari, D.M. Rowe. CRC Handbook of Thermoelectrics (2005)Google Scholar
  34. 34.
    R.J. Cava, Science, 247 (1990).Google Scholar
  35. 35.
    M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, and P. Gogna, Adv. Mater. 19, 8 (2007).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Electrical and Electronics EngineeringMepco Schlenk Engineering College (Autonomous)SivakasiIndia

Personalised recommendations