Advertisement

Calculations of High-Frequency Noise Spectral Density of Different CdTe Metal–Semiconductor–Metal Schottky Contacts

  • H. ElhadidyEmail author
  • F. Z. Mahi
  • J. Franc
  • A. Musiienko
  • V. Dedic
  • O. Schneeweiss
Article
  • 3 Downloads

Abstract

An analytical approach for the study of high-frequency noise in different CdTe Schottky contacts is proposed. The model takes into account the fluctuations from three primary current sources: the leakage current through the Schottky barrier, the fluctuations of surface charge current, and the excess carrier density produced by light illumination (photocurrent). In particular, the current densities related to the perturbation of the electric field inside the whole structure and the free carrier fluctuations are used to determine the detectivity in the Giga and the Terahertz frequencies. It is shown that the current spectral density exhibits a resonance peak near 109 Hz due to the free carrier concentration. The excess carrier fluctuations show a negligible contribution to the total spectral current density. It was found that the Au-S-Au structure presents a high detectivity due to their low noise level of the leakage current. These findings and the detailed model describing the current fluctuation processes in the detector is crucial for the development of detection technology.

Keywords

CdTe Schottky contact thermal noise THz detectors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research was supported by the Ministry of Education, Youth and Sports of the Czech Republic under the Project CEITEC 2020 (Project No. LQ1601) and by the Academy of Sciences of the Czech Republic (Project No. RVO:68081723) and by the Grant Agency of Czech Republic (GACR), Project 102-18-06818S.

References

  1. 1.
    A. Musiienko, R. Grill, P. Moravec, P. Fochuk, I. Vasylchenko, H. Elhadidy, and L. Šedivý, Phys. Rev. Appl. 10, 014019 (2018).CrossRefGoogle Scholar
  2. 2.
    M. Niraula, K. Yasuda, Y. Nakanishi, K. Uchida, T. Mabuchi, Y. Agata, and K. Suzuki, J. Electron. Mater. 33, 645 (2004).CrossRefGoogle Scholar
  3. 3.
    T. Fanning, M.B. Lee, L.G. Casagrande, D. Di Marzio, and M. Dudley, J. Electron. Mater. 22, 943 (1993).CrossRefGoogle Scholar
  4. 4.
    X. Xie, J. Xu, and X.-C. Zhang, Opt. Lett. 31, 978 (2006).CrossRefGoogle Scholar
  5. 5.
    M. Schall, M. Walther, and P. Uhd Jepsen, Phys. Rev. B 64, 094301 (2001).CrossRefGoogle Scholar
  6. 6.
    A. Rice, Y. Jin, X.F. Ma, X.-C. Zhang, D. Bliss, J. Larkin, and M. Alexander, Appl. Phys. Lett. 64, 1324 (1994).CrossRefGoogle Scholar
  7. 7.
    A. Musiienko, R. Grill, J. Pekárek, E. Belas, P. Praus, J. Pipek, V. Dědič, and H. Elhadidy, Appl. Phys. Lett. 111, 082103 (2017).CrossRefGoogle Scholar
  8. 8.
    L. Verger, J.P. Bonnefoy, F. Glasser, and P. Ouvrier-Buffet, J. Electron. Mater. 26, 738 (1997).CrossRefGoogle Scholar
  9. 9.
    S.S. Yoo, B. Rodricks, S. Sivananthan, J.P. Faurie, and P.A. Montano, J. Electron. Mater. 25, 1306 (1996).CrossRefGoogle Scholar
  10. 10.
    C. Szeles, Phys. Stat. Sol. (B) 241, 783 (2004).CrossRefGoogle Scholar
  11. 11.
    L.A. Kosyachenko, T. Aoki, C.P. Lambropoulos, V.A. Gnatyuk, S.V. Melnychuk, V.M. Sklyarchuk, E.V. Grushko, O.L. Maslyanchuk, and O.V. Sklyarchuk, J. Appl. Phys. 113, 054504 (2013).CrossRefGoogle Scholar
  12. 12.
    H. Elhadidy, V. Dedic, J. Franc, and R. Grill, J. Phys. D Appl. Phys. 47, 055104 (2014).CrossRefGoogle Scholar
  13. 13.
    A. Cola and I. Farella, Appl. Phys. Lett. 94, 102113 (2009).CrossRefGoogle Scholar
  14. 14.
    P. Shiktorov, E. Starikov, V. Gruzinskis, L. Reggiani, L. Varani, and J.C. Vaissie, IEEE Electron Device Lett. 26, 2 (2005).CrossRefGoogle Scholar
  15. 15.
    F.Z. Mahi, A. Helmaoui, L. Varani, P. Shiktorov, E. Starikov, and V. Gruzhinskis, Phys. B 403, 3765 (2008).CrossRefGoogle Scholar
  16. 16.
    A. Boukhenoufa, C. Cordier, L. Pichon, and B. Cretu, Thin Solid Films 515, 7556 (2007).CrossRefGoogle Scholar
  17. 17.
    P. Shiktorov, E. Starikov, V. Gruzinskis, S. Pérez, T. Gonzalez, L. Reggiani, L. Varani, and J.C. Vaissie, IEEE Electron Device Lett. 25, 1 (2004).CrossRefGoogle Scholar
  18. 18.
    L. Ciura, A. Kolek, A. Kębłowski, D. Stanaszek, A. Piotrowski, W. Gawron, and J. Piotrowski, Semicond. Sci. Technol. 31, 035004 (2016).CrossRefGoogle Scholar
  19. 19.
    K. Jóźwikowski, A. Jóźwikowska, and A. Martyniuk, J. Electron. Mater. 45, 4769 (2016).CrossRefGoogle Scholar
  20. 20.
    G. Ferrari, M. Sampietro, and G. Bertuccio, Appl. Phys. Lett. 83, 2450 (2003).CrossRefGoogle Scholar
  21. 21.
    O. Sik, L. Grmela, H. Elhadidy, V. Dědič, J. Sikula, P. Grmela, J. Franc, P. Skarvada, and V. Holcman, JINST 8, C06005 (2013).CrossRefGoogle Scholar
  22. 22.
    O. Sik, P. Skarvada, L. Grmela, H. Elhadidy, M. Vondra, J. Sikula, and J. Franc, Phys. Scr. 2013, 014064 (2013).CrossRefGoogle Scholar
  23. 23.
    A. Andreev, L. Grmela, P. Moravec, G. Bosman, and J. Sikula, Semicond. Sci. Technol. 25, 055016 (2010).CrossRefGoogle Scholar
  24. 24.
    M.A. Kinch, C.-F. Wan, and J.D. Beck, J. Electron. Mater. 34, 928 (2005).CrossRefGoogle Scholar
  25. 25.
    P. Schauer, J. Sikula, and P. Moravec, Microelectron. Reliab. 41, 431 (2001).CrossRefGoogle Scholar
  26. 26.
    C.T. Elliott, N.T. Gordon, R.S. Hall, T.J. Phillips, C.L. Jones, and A. Best, J. Electron. Mater. 26, 643 (1997).CrossRefGoogle Scholar
  27. 27.
    M. Sampietro, G. Ferrari, and G. Bertuccio, J. Appl. Phys. 87, 7583 (2000).CrossRefGoogle Scholar
  28. 28.
    H. Elhadidy, F.Z. Mahi, J. Franc, A. Musiienko, V. Dedic, and O. Schneeweiss, Thin Solid Films 645, 340 (2018).CrossRefGoogle Scholar
  29. 29.
    H. Elhadidy, R. Grill, J. Franc, O. Šik, P. Moravec, and O. Schneeweiss, Solid State Ionics 278, 20 (2015).CrossRefGoogle Scholar
  30. 30.
    H. Elhadidy, J. Sikula, and J. Franc, Semicond. Sci. Technol. 27, 015006 (2011).CrossRefGoogle Scholar
  31. 31.
    H.X. Jiang, G. Brown, and J.Y. Lin, J. Appl. Phys. 69, 6701 (1991).CrossRefGoogle Scholar
  32. 32.
    B. Jensen, J. Phys. Chem. Solid. 34, 2235 (1973).CrossRefGoogle Scholar
  33. 33.
    H.B. Michaelson, J. Appl. Phys. 48, 4729 (1977).CrossRefGoogle Scholar
  34. 34.
    V. Dědič, J. Franc, H. Elhadidy, R. Grill, E. Belas, P. Moravec, J. Zázvorka, and P. Höschl, J. Inst. 8, C01008 (2013).Google Scholar
  35. 35.
    R. Grill, J. Franc, H. Elhadidy, E. Belas, Š. Uxa, M. Bugár, P. Moravec, and P. Hoschl, IEEE Trans. Nucl. Sci. 59, 2383 (2012).CrossRefGoogle Scholar
  36. 36.
    J. Kubat, H. Elhadidy, J. Franc, R. Grill, E. Belas, P. Hoschl, and P. Praus, IEEE Trans. Nucl. Sci. 56, 1706 (2009).CrossRefGoogle Scholar
  37. 37.
    H. Elhadidy, J. Franc, E. Belas, P. Hlidek, P. Moravec, R. Grill, and P. Hoschl, J. Electron. Mater. 37, 1219 (2008).CrossRefGoogle Scholar
  38. 38.
    J. Franc, H. Elhadidy, V. Babentsov, A. Fauler, and M. Fiederle, J. Mater. Res. 21, 1025 (2006).CrossRefGoogle Scholar
  39. 39.
    H. Elhadidy, J. Franc, V. Dedic, and A. Musiienko, JINST 13, C10001 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Faculty of Mathematics and Physics, Institute of PhysicsCharles UniversityPragueCzech Republic
  2. 2.CEITEC IPM, Institute of Physics of MaterialsAcademy of Sciences of the Czech RepublicBrnoCzech Republic
  3. 3.Faculty of Science, Physics DepartmentMansoura UniversityMansouraEgypt
  4. 4.Science and Technology InstituteUniversity of BecharBécharAlgeria

Personalised recommendations