Advertisement

Electrocaloric Effect with Variations of Diffusivity in Relaxor Ferroelectric Materials

  • Shibnath SamantaEmail author
  • Venkataraman Sankaranarayanan
  • Kanikrishnan SethupathiEmail author
Article
  • 11 Downloads

Abstract

Diffusivity is the quantitative measure of the relaxor nature of a ferroelectric material. The observed electrocaloric effect of the relaxor ferroelectrics due to the change of diffusivity are reported in this article. Four samples with diffusivities 1.55, 1.72, 1.94 and 2.18 are prepared by precisely doping La in Pb (Zr0.65Ti0.35)O3 [i.e. PZT (65/35)], from 6% to 9%. These values are deduced from the dielectric measurements which are performed in the frequency range from 100 Hz to 10 MHz at different temperatures ranging from 173 K to 573 K. The temperature (Tm), where the dielectric constant is the highest, is also found to decrease with increasing La concentration. For 6% doped sample, the transition occurs around 483 K and for 9%, it is around 364 K. As the value of diffusivity is varied from 1.55 to 2.18, both the values of entropy and temperature changes (ΔS and ΔT) get reduced. The highest ΔS observed is around 0.37 J kg−1 K−1 and the corresponding ΔT is 0.49 K for the diffusivity of 1.55. For the highest diffusivity, the values of ΔS and ΔT are found to be 0.12 J kg−1 K−1 and 0.11 K, respectively. Apart from these changes, it is also observed that as the transition temperature decreases with increasing diffusivity, the maximum ΔS and ΔT values occur at lower temperatures which is consistent with the change of Tm.

Keywords

Ferroelectric dielectric electrocaloric effect PZT relaxor ferroelectrics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    G. Zhang, Q. Li, H. Gu, S. Jiang, K. Han, M.R. Gadinski, M.A. Haque, Q. Zhang, and Q. Wang, Adv. Mater. 27, 1450 (2015).CrossRefGoogle Scholar
  2. 2.
    J. Shi, D. Han, Z. Li, L. Yang, S.-G. Lu, Z. Zhong, J. Chen, Q.M. Zhang, and X. Qian, Joule 3, 1200 (2019).CrossRefGoogle Scholar
  3. 3.
    X. Moya, E. Stern-Taulats, S. Crossley, D. Gonzalez-Alonso, S. Kar-Narayan, A. Planes, L. Manosa, and N.D. Mathur, Adv. Mater. 25, 1360 (2013).CrossRefGoogle Scholar
  4. 4.
    A.S. Mischenko, Q. Zhang, J.F. Scott, R.W. Whatmore, and N.D. Mathur, Science 311, 1270 (2006).CrossRefGoogle Scholar
  5. 5.
    S.G. Lu, B. Rožič, Q.M. Zhang, Z. Kutnjak, X. Li, E. Furman, L.J. Gorny, M. Lin, B. Malič, M. Kosec, R. Blinc, and R. Pirc, Appl. Phys. Lett. 97, 162904 (2010).CrossRefGoogle Scholar
  6. 6.
    A.S. Mischenko, Q. Zhang, R.W. Whatmore, J.F. Scott, and N.D. Mathur, Appl. Phys. Lett. 89, 242912 (2006).CrossRefGoogle Scholar
  7. 7.
    Y. Bai, X. Han, X.C. Zheng, and L. Qiao, Sci. Rep. 3, 2895 (2013).CrossRefGoogle Scholar
  8. 8.
    F. Le Goupil and N.M. Alford, APL Mater. 4, 064104 (2016).CrossRefGoogle Scholar
  9. 9.
    G. Zhang, Z. Chen, B. Fan, J. Liu, M. Chen, M. Shen, P. Liu, Y. Zeng, S. Jiang, and Q. Wang, APL Mater. 4, 064103 (2016).CrossRefGoogle Scholar
  10. 10.
    G. Zhang, M. Chen, B. Fan, Y. Liu, M. Li, S. Jiang, H. Huang, H. Liu, H. Li, and Q. Wang, J. Am. Ceram. Soc. 100, 4581 (2017).CrossRefGoogle Scholar
  11. 11.
    J. Qian, P. Hu, C. Liu, J. Jiang, Z. Dan, J. Ma, Y. Lin, C.-W. Nan, and Y. Shen, Sci. Bull. 63, 356 (2018).CrossRefGoogle Scholar
  12. 12.
    R. Pirc, Z. Kutnjak, R. Blinc, and Q.M. Zhang, J. Appl. Phys. 110, 074113 (2011).CrossRefGoogle Scholar
  13. 13.
    H. Aziguli, X. Chen, Y. Liu, G. Yang, P. Yu, and Q. Wang, Appl. Phys. Lett. 112, 193902 (2018).CrossRefGoogle Scholar
  14. 14.
    F.L. Goupil, A.-K. Axelsson, L.J. Dunne, M. Valant, G. Manos, T. Lukasiewicz, J. Dec, A. Berenov, and N.M. Alford, Adv. Energy Mater. 4, 1301688 (2014).CrossRefGoogle Scholar
  15. 15.
    S. Samanta, M. Muralidhar, V. Sankaranarayanan, K. Sethupathi, M.S.R. Rao, and M. Murakami, J. Mater. Sci. 52, 13012 (2017).CrossRefGoogle Scholar
  16. 16.
    S. Samanta, V. Sankaranarayanan, K. Sethupathi, and M.S.R. Rao, Vacuum 157, 514 (2018).CrossRefGoogle Scholar
  17. 17.
    V.V. Efimov, E.A. Efimova, K. Iakoubovskii, S. Khasanov, D.I. Kochubey, V.V. Kriventsov, A. Kuzmin, B.N. Mavrin, M. Sakharov, V. Sikolenko, A.N. Shmakov, and S.I. Tiutiunnikov, J. Phys. Chem. Solids 67, 2007 (2006).CrossRefGoogle Scholar
  18. 18.
    C.S. Lynch, Acta Mater. 44, 4137 (1996).CrossRefGoogle Scholar
  19. 19.
    E.T. Keve and K.L. Bye, J. Appl. Phys. 46, 810 (1975).CrossRefGoogle Scholar
  20. 20.
    P. Fang, H. Fan, J. Li, L. Chen, and F. Liang, J. Alloys Compd. 497, 416 (2010).CrossRefGoogle Scholar
  21. 21.
    A.K. Yadav, A. Anita, S. Kumar, A. Panchwanee, V.R. Reddy, P.M. Shirage, S. Biring, and S. Sen, RSC Adv. 7, 39434 (2017).CrossRefGoogle Scholar
  22. 22.
    M.A. Mohiddon and K.L. Yadav, Phys. Status Solidi A 206, 1606 (2009).CrossRefGoogle Scholar
  23. 23.
    M.A. Mohiddon and K.L. Yadav, J. Phys. D Appl. Phys. 40, 7540 (2007).CrossRefGoogle Scholar
  24. 24.
    V. Bovtun, S. Kamba, S. Veljko, D. Nuzhnyy, J. Kroupa, M. Savinov, P. Vaněk, J. Petzelt, J. Holc, M. Kosec, H. Amorín, and M. Alguero, Phys. Rev. B 79, 104111 (2009).CrossRefGoogle Scholar
  25. 25.
    R. Pirc and R. Blinc, Phys. Rev. B 60, 13470 (1999).CrossRefGoogle Scholar
  26. 26.
    S. Samanta, V. Sankaranarayanan, and K. Sethupathi, J. Mater. Sci. Mater. Electron. 29, 7239 (2018).CrossRefGoogle Scholar
  27. 27.
    G.H. Haertling, Integr. Ferroelectr. 3, 207 (2006).CrossRefGoogle Scholar
  28. 28.
    Y. Zhao, X.Q. Liu, J.W. Wu, S.Y. Wu, and X.M. Chen, J. Alloys Compd. 729, 57 (2017).CrossRefGoogle Scholar
  29. 29.
    B. Li, W.J. Ren, X.W. Wang, H. Meng, X.G. Liu, Z.J. Wang, and Z.D. Zhang, Appl. Phys. Lett. 96, 102903 (2010).CrossRefGoogle Scholar
  30. 30.
    X.D. Jian, B. Lu, D.D. Li, Y.B. Yao, T. Tao, B. Liang, J.H. Guo, Y.J. Zeng, J.L. Chen, and S.G. Lu, ACS Appl. Mater. Interfaces 10, 4801 (2018).CrossRefGoogle Scholar
  31. 31.
    X.-D. Jian, B. Lu, D.-D. Li, Y.-B. Yao, T. Tao, B. Liang, and S.-G. Lu, J. Alloys Compd. 742, 165 (2018).CrossRefGoogle Scholar
  32. 32.
    Y.-B. Ma, K. Albe, and B.-X. Xu, Phys. Rev. B 91, 184108 (2015).CrossRefGoogle Scholar
  33. 33.
    Y.-B. Ma, C. Molin, V.V. Shvartsman, S. Gebhardt, D.C. Lupascu, K. Albe, and B.-X. Xu, J. Appl. Phys. 121, 024103 (2017).CrossRefGoogle Scholar
  34. 34.
    G. Singh, V.S. Tiwari, and P.K. Gupta, Appl. Phys. Lett. 103, 202903 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Technology Madras (IIT Madras)ChennaiIndia

Personalised recommendations