Judd–Ofelt Parameters of Eu3+ and Energy Transfer of Ce3+/Eu3+ in Sr2Al2SiO7 Materials

  • Ho Van Tuyen
  • Do Thanh Tien
  • Nguyen Manh Son
  • Do Van PhanEmail author


Sr2Al2SiO7 (SAS) phosphors doped with Eu3+, Ce3+, Ce3+/Eu3+ ions were synthesized by solid-state reaction heating at 1250°C. The phonon energy associated with the 7F0 → 5D2 transition of Eu3+ ions in SAS material was determined by phonon sideband spectra, and vibration energies in the 200–1200 cm−1 region were measured from the Raman spectra. The asymmetry of the Eu3+ site in the SAS lattice was estimated by the Judd–Ofelt intensity parameters analysis. Ωλ (λ = 2, 4, 6) intensity parameters determined from emission spectra showed that the introducing of Al2O3 leads to an enhancement of the asymmetry of the Eu3+ surroundings in SAS:Eu3+ materials. Photoluminescence investigation of SAS:Ce3+ (x mol%),Eu3+ (1 mol%) (x = 0, 0.5, 1.0, and 1.5) samples indicated that there is an energy transfer from the sensitizer Ce3+ to the activator Eu3+ in the Sr2Al2SiO7 host lattice.


Aluminosilicate phonon sideband energy transfer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.03-2018.323.


  1. 1.
    Q. Zhang, J. Wang, M. Zhang, and Q. Su, Appl. Phys. B 92, 195 (2008).CrossRefGoogle Scholar
  2. 2.
    H.Y. Jiao, C.R. LiMao, Q. Chen, P.Y. Wang, and R.C. Cai, IOP Conf. Ser. Mater. Sci. Eng. 292, 012058 (2018).CrossRefGoogle Scholar
  3. 3.
    K. Van den Eeckhout, D. Poelman, and P.F. Smet, Materials 6, 2789 (2013).CrossRefGoogle Scholar
  4. 4.
    F.C. Lu, L.J. Bai, W. Dang, Z.P. Yang, and P. Lin, ECS J. Solid State Sci. Technol. 4, R27 (2014).CrossRefGoogle Scholar
  5. 5.
    Y. Ding, Y. Zhang, Z. Wang, W. Li, D. Mao, H. Han, and C. Chang, J. Lumin. 129, 294 (2009).CrossRefGoogle Scholar
  6. 6.
    G. Li, M. Li, L. Li, H. Yu, H. Zou, L. Zou, S. Gan, and X. Xu, Mater. Lett. 65, 3418 (2011).CrossRefGoogle Scholar
  7. 7.
    A. Jadhaw, V.D. Sonwane, A.S. Gour, and P. Jha, Luminescence 32, 1349 (2017).CrossRefGoogle Scholar
  8. 8.
    W. Zhou, X. Ma, M. Zhang, Y. Luo, and Z. Xia, J. Rare Earth 33, 700 (2015).CrossRefGoogle Scholar
  9. 9.
    I.P. Sahu, D.P. Bisen, N. Brahme, and R.K. Tamrakar, J. Mater. Sci.: Mater. Electron. 26, 10075 (2015).Google Scholar
  10. 10.
    P. Zhang, Z. Lu, Q. Yuan, Q. Hou, T.D. Golden, X. Ren, L. Weng, and H. Wang, Mater. Chem. Phys. 134, 1190 (2012).CrossRefGoogle Scholar
  11. 11.
    H. Zou, D. Peng, Z. Chu, X. Wang, Y. Li, and X. Yao, J. Mater. Sci. 48, 7981 (2013).CrossRefGoogle Scholar
  12. 12.
    V. Dubey, R. Tiwari, R.K. Tamrakar, J. Kaur, S. Dutta, S. Das, H.G. Visser, and S. Som, J. Lumin. 180, 169 (2016).CrossRefGoogle Scholar
  13. 13.
    S. Arunkumar, K. Venkata Krishnaiah, and K. Marimuthu, Phys. B 416, 88 (2013).CrossRefGoogle Scholar
  14. 14.
    W. Pan, G. Ning, Y. Lin, and X. Yang, J. Rare Earth 26, 207 (2008).CrossRefGoogle Scholar
  15. 15.
    Y. Gong, Y. Wang, Y. Li, and X. Xu, Ce3+. J. Electrochem. Soc. 157, J208 (2010).CrossRefGoogle Scholar
  16. 16.
    K. Park, H. Kim, and D.A. Hakeem, Dyes Pigments 136, 70 (2017).CrossRefGoogle Scholar
  17. 17.
    M.A. Bouhifd, G. Gruener, B.O. Mysen, and P. Richet, Phys. Chem. Miner. 29, 655 (2002).CrossRefGoogle Scholar
  18. 18.
    A.K. Yadav and P. Singh, RSC Adv. 5, 67583 (2015).CrossRefGoogle Scholar
  19. 19.
    A.M.B. Silva, C.M. Queiroz, S. Agathopoulos, R.N. Correia, M.H.V. Fernandes, and J.M. Oliveira, J. Mol. Struct. 986, 16 (2011).CrossRefGoogle Scholar
  20. 20.
    M. Wang, J. Cheng, M. Li, and F. He, Phys. B 406, 3865 (2011).CrossRefGoogle Scholar
  21. 21.
    H. Lin, H. Liang, G. Zhang, and Q. Su, Appl. Phys. A 105, 143 (2011).CrossRefGoogle Scholar
  22. 22.
    Y. Tian, B. Chen, R. Hua, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, Y. Zheng, T. Yu, L. Huang, and H. Yu, J. Appl. Phys. 109, 053511 (2011).CrossRefGoogle Scholar
  23. 23.
    I.P. Sahu, D.P. Bisen, N. Brahme, R.K. Tamrakar, and R. Shrivastava, J. Mater. Sci.: Mater. Electron. 26, 8824 (2015).Google Scholar
  24. 24.
    A.M. Efimov, V.G. Pogareva, and A.V. Shashkin, J. Non-Cryst. Solids 332, 93 (2003).CrossRefGoogle Scholar
  25. 25.
    K. Binnemans, Coord. Chem. Rev. 295, 1 (2015).CrossRefGoogle Scholar
  26. 26.
    S. Tanabe, S. Todoroki, K. Hirao, and N. Soga, J. Non-Cryst. Solids 122, 59 (1990).CrossRefGoogle Scholar
  27. 27.
    M. Kolte, V.B. Pawade, and S.J. Dhoble, Appl. Phys. A 122, 59 (2016).CrossRefGoogle Scholar
  28. 28.
    J.A. Capobianco, P.P. Proulx, M. Bettinelli, and F. Negrisolo, Phys. Rev. B 42, 5936 (1990).CrossRefGoogle Scholar
  29. 29.
    B. Tian, B. Chen, Y. Tian, X. Li, J. Zhang, J. Sun, H. Zhong, L. Cheng, S. Fu, H. Zhong, Y. Wang, X. Zhang, H. Xia, and R. Hua, J. Mater. Chem. C 1, 2338 (2013).CrossRefGoogle Scholar
  30. 30.
    H.H. Xiong, C. Zhu, X. Zhao, Z.Q. Wang, and H. Lin, Adv. Mater. Sci. Eng. 2014, 1 (2014).CrossRefGoogle Scholar
  31. 31.
    P.A. Arifov and M.M. Bulatova, Glass Phys. Chem 30, 198 (2004).CrossRefGoogle Scholar
  32. 32.
    P. Babu and C.K. Jayasankar, Phys. B 279, 262 (2000).CrossRefGoogle Scholar
  33. 33.
    S.K. Gupta, M. Mohapatra, S. Kaity, V. Natarajan, and S.V. Godbole, J. Lumin. 132, 1329 (2012).CrossRefGoogle Scholar
  34. 34.
    P. Van Do, V.P. Tuyen, V.X. Quang, N.T. Thanh, V.T.T. Ha, H. Van Tuyen, N.M. Khaidukov, J. Marcazzó, Y.-I. Lee, and B.T. Huy, Opt. Mater. 35, 1636 (2013).CrossRefGoogle Scholar
  35. 35.
    K. Binnemans, C. Gorller-Walrand, and J.L. Adam, Chem. Phys. Lett. 280, 333 (1997).CrossRefGoogle Scholar
  36. 36.
    T.T. Hong, P.T. Dung, and V.X. Quang, J. Electron. Mater. 45, 2569 (2016).CrossRefGoogle Scholar
  37. 37.
    O. Viagin, A. Masalov, I. Ganina, and Y. Malyukin, Opt. Mater. 31, 1808 (2009).CrossRefGoogle Scholar
  38. 38.
    M. Batentschuk, A. Osvet, G. Schierning, A. Klier, J. Schneider, and A. Winnacker, Radiat. Meas. 38, 539 (2004).CrossRefGoogle Scholar
  39. 39.
    C. Ma, S. Jiang, and X. Zhou, J. Rare Earth 28, 40 (2010).CrossRefGoogle Scholar
  40. 40.
    V. Uma, M. Vijayakumar, K. Marimuthu, and G. Muralidharan, J. Mol. Struct. 1151, 266 (2018).CrossRefGoogle Scholar
  41. 41.
    C.S. McCamy, Color Res. Appl. 17, 142 (1992).CrossRefGoogle Scholar
  42. 42.
    G. Lakshminarayana, S.O. Baki, A. Lira, U. Caldiño, A.N. Meza-Rocha, I.V. Kityk, A.F. Abas, M.T. Alresheedi, and M.A. Mahdi, J. Non-Cryst. Solids 481, 191 (2018).CrossRefGoogle Scholar
  43. 43.
    V.P. Tuyen, V.X. Quang, P. Van Do, L.D. Thanh, N.X. Ca, V.X. Hoa, L. van Tuat, L.A. Thi, and M. Nogami, J. Lumin. 210, 435 (2019).CrossRefGoogle Scholar
  44. 44.
    P. Van Do, V.X. Quang, L.D. Thanh, V.P. Tuyen, N.X. Ca, V.X. Hoa, and H. Van Tuyen, Opt. Mater. 92, 174 (2019).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Ho Van Tuyen
    • 1
  • Do Thanh Tien
    • 2
    • 3
  • Nguyen Manh Son
    • 2
  • Do Van Phan
    • 1
    Email author
  1. 1.Institute of Research and DevelopmentDuy Tan UniversityDa NangVietnam
  2. 2.Faculty of PhysicsUniversity of SciencesHueVietnam
  3. 3.Faculty of Basic ScienceUniversity of Agriculture and ForestryHueVietnam

Personalised recommendations