Advertisement

Effect of Ga-Bi Co-doped on Structural and Ionic Conductivity of Li7La3Zr2O12 Solid Electrolytes Derived from Sol–Gel Method

  • Jun Li
  • Kongjun ZhuEmail author
  • Xin Zhang
  • Tuo Wang
  • Xia Li
  • Jing Wang
  • Kang Yan
  • Jinsong Liu
Article
  • 3 Downloads

Abstract

In the present study, Li6.5−3xGaxLa3Zr1.5Bi0.5O12 (0 ≤ x ≤ 0.3) ceramics were obtained by the sol–gel method. Then, the influences of Ga contents on the crystal structure, micromorphology, and ionic conductivity of the above ceramics were systematically studied by X-ray diffraction, scanning electron microscopy, and impedance spectroscopy. Our results show that all samples appear to be in cubic phase. Suitably doping Ga contents (x = 0.1) promoted the densification of ceramics with relative density of 93.5% and improved ionic conductivity of 1.7 × 10−4 S cm−1. This finding on improved ionic conductivity can be attributed to the enhanced densification and occupation of the octahedral 96 h site.

Keywords

solid state electrolyte co-doped ionic conductivity sol–gel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the National Nature Science Foundation of China (NSFC Nos. 51672130 and 51572123), the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (Nanjing University of Aeronautics and astronautics) (Grant No. MCMS-0518K01), the special fund of 333 high-level talents training project in Jiangsu province (BRA2017424), the Key Research and Development Program of Jiangsu Province (Grant No. BE2018008-2), the Innovation Fund, Nanjing University of Aeronautics and Astronautics (2018CX00147) and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

References

  1. 1.
    K. Wang, X. Li, and J. Chen, Adv. Mater. 27, 527 (2015).CrossRefGoogle Scholar
  2. 2.
    Z. Xiong, P. Hu, Y. Zhang, F. Cao, D. Wang, C. Sun, Y. Hu, and H. Gu, J. Electron. Mater. 47, 5987 (2018).CrossRefGoogle Scholar
  3. 3.
    R. Bouchet, S. Maria, R. Meziane, A. Aboulaich, L. Lienafa, J.P. Bonnet, T.N. Phan, D. Bertin, D. Gigmes, D. Devaux, R. Denoyel, and M. Armand, Nat. Mater. 12, 452 (2013).CrossRefGoogle Scholar
  4. 4.
    X. Yang, D. Kong, Z. Chen, Y. Sun, and Y. Liu, J. Mater. Sci. Mater. Electron. 29, 1523 (2018).CrossRefGoogle Scholar
  5. 5.
    R. Mori, J. Electron. Mater. 43, 1166 (2014).CrossRefGoogle Scholar
  6. 6.
    W. Zhang, J. Nie, F. Li, Z. Wang, and C. Sun, Nano Energy 45, 413 (2018).CrossRefGoogle Scholar
  7. 7.
    C. Sun, J. Liu, Y. Gong, D.P. Wilkinson, and J. Zhang, Nano Energy 33, 363 (2017).CrossRefGoogle Scholar
  8. 8.
    L. Buannic, B. Orayech, J.M.L.D. Amo, J. Carrasco, N.A. Katcho, F. Aguesse, W. Manalastas, W. Zhang, J. Kilner, and A. Llordes, Chem. Mater. 29, 1769 (2017).CrossRefGoogle Scholar
  9. 9.
    Y. Li, Z. Wang, Y. Cao, F. Du, C. Chen, Z. Cui, and X. Guo, Electrochim. Acta 180, 37 (2015).CrossRefGoogle Scholar
  10. 10.
    C. Deviannapoorani, L. Dhivya, S. Ramakumar, and R. Murugan, J. Power Sources 240, 18 (2013).CrossRefGoogle Scholar
  11. 11.
    H. Elshinawi, G.W. Paterson, D.A. Maclaren, E.J. Cussen, and S.A. Corr, J. Mater. Chem. A 5, 319 (2017).CrossRefGoogle Scholar
  12. 12.
    A. Wachter-Welzl, R. Wagner, D. Rettenwander, S. Taibl, G. Amthauer, and J. Fleig, J. Electroceram. 38, 176 (2017).CrossRefGoogle Scholar
  13. 13.
    E. Rangasamy, J. Wolfenstine, and J. Sakamoto, Solid State Ionics 206, 28 (2012).CrossRefGoogle Scholar
  14. 14.
    R. Wagner, G.J. Redhammer, D. Rettenwander, G. Tippelt, A. Welzl, S. Taibl, J. Fleig, A. Franz, W. Lottermoser, and G. Amthauer, Chem. Mater. 28, 5943 (2016).CrossRefGoogle Scholar
  15. 15.
    S. Afyon, F. Krumeich, and J.L.M. Rupp, J. Mater. Chem. A 3, 18636 (2015).CrossRefGoogle Scholar
  16. 16.
    X. Liu, Y. Li, T. Yang, Z. Cao, W. He, Y. Gao, J. Liu, G. Li, and Z. Li, J. Am. Ceram. Soc. 100, 1527 (2017).CrossRefGoogle Scholar
  17. 17.
    S. Mukhopadhyay, T. Thompson, J. Sakamoto, A. Huq, J. Wolfenstine, J.L. Allen, N. Bernstein, D.A. Stewart, and M.D. Johannes, Chem. Mater. 27, 3658 (2015).CrossRefGoogle Scholar
  18. 18.
    R. Inada, K. Kusakabe, T. Tanaka, S. Kudo, and Y. Sakurai, Solid State Ionics 262, 568 (2014).CrossRefGoogle Scholar
  19. 19.
    S. Ramakumar, L. Satyanarayana, S.V. Manorama, and R. Murugan, Phys. Chem. Chem. Phys. 15, 11327 (2013).CrossRefGoogle Scholar
  20. 20.
    Y. Xia, L. Ma, H. Lu, X. Wang, Y. Gao, W. Liu, Z. Zhuang, L. Guo, and Q. Fang, Front. Mater. Sci. 9, 366 (2015).CrossRefGoogle Scholar
  21. 21.
    Z. Cao, X. Cao, X. Liu, W. He, Y. Gao, J. Liu, and J. Zeng, Ceram. Int. 41, 6232 (2015).CrossRefGoogle Scholar
  22. 22.
    Y. Li, T. Yang, W. Wu, Z. Cao, W. He, Y. Gao, J. Liu, and G. Li, Ionics 24, 3305 (2018).CrossRefGoogle Scholar
  23. 23.
    R. Daniel, R. Günther, P.P. Florian, L. Cheng, L. Miara, R. Wagner, A. Welzl, E. Suard, M.M. Doeff, M. Wilkening, J. Fleig, and G. Amthauer, Chem. Mater. 28, 2384 (2016).CrossRefGoogle Scholar
  24. 24.
    M. Yi, T. Liu, X. Wang, J. Li, C. Wang, and Y. Mo, Ceram. Int. 45, 786 (2019).CrossRefGoogle Scholar
  25. 25.
    Y. Matsuda, K. Sakamoto, M. Matsui, O. Yamamoto, Y. Takeda, and N. Imanishi, Solid State Ionics 277, 23 (2015).CrossRefGoogle Scholar
  26. 26.
    X. Chen, T. Wang, W. Lu, T. Cao, M. Xue, B. Li, and C. Zhang, J. Alloys Compd. 744, 386 (2018).CrossRefGoogle Scholar
  27. 27.
    S. Song, B. Chen, Y. Ruan, J. Sun, L. Yu, Y. Wang, and J. Thokchom, Electrochim. Acta 270, 501 (2018).CrossRefGoogle Scholar
  28. 28.
    X. Chen, Q. Chen, F. Jin, X. Liu, and H. Zhang, J. Sol Gel. Sci. Technol. 80, 474 (2016).CrossRefGoogle Scholar
  29. 29.
    Z. Li, Q. Chen, X. Chen, F. Jin, X. Wang, N. Yang, and H. Zhang, J. Sol Gel. Sci. Technol. 87, 400 (2018).CrossRefGoogle Scholar
  30. 30.
    H.C. Lee, N.R. Oh, and A.R. Yoo, J. Korean Phys. Soc. 73, 1535 (2018).CrossRefGoogle Scholar
  31. 31.
    A. Paulus, S. Kammler, S. Heuer, M.C. Paulus, P. Jakes, J. Granwehr, and R.A. Eichel, J. Electrochem. Soc. 166, A5403 (2019).CrossRefGoogle Scholar
  32. 32.
    V. Thangadurai, D. Pinzaru, S. Narayanan, and A.K. Baral, J. Phys. Chem. Lett. 6, 292 (2015).CrossRefGoogle Scholar
  33. 33.
    S. Ohta, S. Komagata, J. Seki, T. Saeki, S. Morishita, and T. Asaoka, J. Power Sources 238, 53 (2013).CrossRefGoogle Scholar
  34. 34.
    Y. Jin and P.J. McGinn, J. Power Sources 196, 8683 (2011).CrossRefGoogle Scholar
  35. 35.
    J. Wolfenstine, J. Allen, E. Rangasamy, and J. Sakamoto, J. Power Sources 208, 193 (2012).CrossRefGoogle Scholar
  36. 36.
    R. Wagner, D. Rettenwander, G.J. Redhammer, G. Tippelt, G. Sabathi, M.E. Musso, B. Stanje, M. Wilkening, E. Suard, and G. Amthauer, Inorg. Chem. 55, 12211 (2016).CrossRefGoogle Scholar
  37. 37.
    C. Shao, Z. Yu, H. Liu, Z. Zheng, N. Sun, and C. Diao, Electrochim. Acta 225, 345 (2017).CrossRefGoogle Scholar
  38. 38.
    L. Zhang, J. Yang, Y. Gao, X. Wang, Q. Fang, and C. Chen, J. Power Sources 355, 69 (2017).CrossRefGoogle Scholar
  39. 39.
    D. Wang, G. Zhong, O. Dolotko, Y. Li, M.J. McDonald, J.X. Mi, R. Fu, and Y. Yang, J. Mater. Chem. A 2, 20271 (2014).CrossRefGoogle Scholar
  40. 40.
    D. Wang, G. Zhong, W. Pang, Z. Guo, Y. Li, M.J. McDonald, R. Fu, J.X. Mi, and Y. Yang, Chem. Mater. 27, 6650 (2015).CrossRefGoogle Scholar
  41. 41.
    J. Wu, E. Chen, Y. Yu, L. Liu, Y. Wu, W. Pang, V.K. Peterson, and X. Gu, ACS Appl. Mater. Inter. 9, 1542 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace EngineeringNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations