Advertisement

Green Synthesis of Nickel–Copper Mixed Ferrite Nanoparticles: Structural, Optical, Magnetic, Electrochemical and Antibacterial Studies

  • B. Gayathri Manju
  • P. RajiEmail author
Article
  • 4 Downloads

Abstract

The nickel–copper mixed ferrite nanoparticles [Cu1−xNixFe2O4 (x = 0, 0.5, 1)] NPs were prepared a by combustion method using Aloe barbadensis extract as a green reducing agent. The structural, functional, morphological, optical, magnetic, electrochemical properties of the sample were investigated using x-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, energy-dispersive x-ray spectroscopy, ultraviolet–visible (UV–Vis) spectrophotometry, photoluminescence, vibrating sample and cyclic voltammetry. The XRD patterns showed that all compositions with a cubic spinel structure and a crystallite size of 52 nm were reduced to 29 nm after nickel addition in copper ferrite and 35.85 nm for nickel ferrite. The UV–Vis absorption spectrum shows that the nickel-substituted copper ferrite band energy (Eg) increases as the crystallite size decreases. Measurements of magnetization obtained at room temperature revealed a soft ferromagnetic behaviour and saturation magnetization, coercivity value increased with the substitution of nickel. The maximum specific capacitance of 114 F g−1 was obtained at the scan rate of 5 mV s−1 for copper–nickel mixed ferrite NPs. A study of antibacterial activity against Escherichia coli, Klebsilla pneumonia, Staphylococcus aureus, and Bacillus subtilis using a well-diffusion method was performed. Nickel substitution on the copper spinel ferrite NPs revealed a major influence on structural, optical, magnetic, electrochemical and magnetic properties of the product obtained.

Keywords

Sol–gel Aloe vera electrochemical magnetic properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors are grateful for the financial support given by the Management of Mepco Schlenk Engineering College. The authors are also thankful to Thiru. A. Tenzing, Correspondent; Dr. S. Arivazhagan, Principal; and Dr. A. Marikani, Senior Professor and Head, Department of Physics, Mepco Schlenk Engineering College, Sivakasi, for their constant support and encouragement.

Conflict of interest

There is no conflict of interest in the submission.

References

  1. 1.
    B. Cruz-Franco, T. Gaudisson, S. Ammar, A. Bolarin-Miro, F. Sanchez de Jesus, F. Mazaleyrat, S. Nowak, G. Vazquez-Victorio, R. Ortega-Zempoalteca, and R. Valenzuela, IEEE T Magn. 50, 1 (2014).CrossRefGoogle Scholar
  2. 2.
    S. Chang, K. Lee, Z. Zainal, K. Tan, N. Yusof, W. Yusoff, J. Lee, and N. Wu, Electrochim. Acta 67, 67 (2012).CrossRefGoogle Scholar
  3. 3.
    T. Mathew, S. Malwadkar, S. Pai, N. Sharanappa, C. Sebastian, C. Satyanarayana, and V. Bokade, Catal. Lett. 91, 3 (2003).CrossRefGoogle Scholar
  4. 4.
    H. Yue, Q. Wang, Z. Shi, C. Ma, Y. Ding, N. Huo, J. Zhang, and S. Yang, Electrochim. Acta 180, 622 (2015).CrossRefGoogle Scholar
  5. 5.
    N. Sanpo, J. Wang, and C. Berndt, J. Nano Res. 22, 95 (2013).CrossRefGoogle Scholar
  6. 6.
    P. Stepp, F. Thomas, P. Lockman, H. Chen, and A. Rosengart, J. Magn. Magn. Mater. 321, 1591 (2009).CrossRefGoogle Scholar
  7. 7.
    K. Ishaq, A. Saka, A. Kamardeen, A. Ahmed, M. Alhassan, and H. Abdullahi, Eng. Sci. Technol. Int J. 20, 563 (2017).CrossRefGoogle Scholar
  8. 8.
    A. Lagashetty, A. Pattar, and S. Ganiger, Heliyon 5, e01760 (2019).CrossRefGoogle Scholar
  9. 9.
    A. Hathout, A. Aljawish, B. Sabry, A. El-Nekeety, M. Roby, N. Deraz, S. Aly, and M. Abdel-Wahhab, J. Appl. Pharm. Sci. 7, 086 (2017).CrossRefGoogle Scholar
  10. 10.
    A. Ashour, A. El-Batal, M. Maksoud, G. El-Sayyad, S. Labib, E. Abdeltwab, and M. El-Okr, Particuology 40, 141 (2018).CrossRefGoogle Scholar
  11. 11.
    S. Velho-Pereira, A. Noronha, A. Mathias, R. Zakane, V. Naik, P. Naik, A. Salker, and S. Naik, Mater. Sci. Eng. C 52, 282 (2015).CrossRefGoogle Scholar
  12. 12.
    T. Boobalan, S. Pavithradevi, N. Suriyanarayanan, M. Manivel Raja, and E. Ranjith Kumar, J. Magn. Magn. Mater. 428, 382 (2017).CrossRefGoogle Scholar
  13. 13.
    K. Rajasekhar Babu, K. Rao, and B. Rajesh Babu, J. Magn. Magn. Mater. 434, 118 (2017).CrossRefGoogle Scholar
  14. 14.
    P. Das and G. Singh, J. Magn. Magn. Mater. 401, 918 (2016).CrossRefGoogle Scholar
  15. 15.
    A. Gholizadeh and E. Jafari, J. Magn. Magn. Mater. 422, 328 (2017).CrossRefGoogle Scholar
  16. 16.
    S.K. Srikar, D.D. Giri, D.B. Pal, P.K. Mishra, and S.N. Upadhyay, Green Sustain. Chem. 06, 34 (2016).CrossRefGoogle Scholar
  17. 17.
    O.M. Muñoz, X. Leal, V. Quitral, and L. Cardemil, Med. Aromat Plants (2015).  https://doi.org/10.4172/2167-0412.1000199.Google Scholar
  18. 18.
    M.D. Boudreau and F.A. Beland, J. Environ. Sci. Health C 24, 103 (2006).CrossRefGoogle Scholar
  19. 19.
    K. Nejati and R. Zabihi, Chem. Cent. J. (2012).  https://doi.org/10.1186/1752-153X-6-23.Google Scholar
  20. 20.
    S. Anwar, K.S. Muthu, V. Ganesh, and N. Lakshminarasimhan, J. Electrochem. Soc. 158, A976 (2011).CrossRefGoogle Scholar
  21. 21.
    C. Vidal-Abarca, P. Lavela, and J.L. Tirado, J. Phys. Chem. C 114, 12828 (2010).CrossRefGoogle Scholar
  22. 22.
    B. Bhujun, M.T.T. Tan, and A.S. Shanmugam, Results Phys. 7, 345 (2017).CrossRefGoogle Scholar
  23. 23.
    A. Manikandan, R. Sridhar, S. Arul Antony, and S. Ramakrishna, J. Mol. Struct. 1076, 188 (2014).CrossRefGoogle Scholar
  24. 24.
    U. Wongpratat, S. Maensiri, and E. Swatsitang, Appl. Surf. Sci. 380, 60 (2016).CrossRefGoogle Scholar
  25. 25.
    P. Laokul, V. Amornkitbamrung, S. Seraphin, and S. Maensiri, Curr. Appl. Phys. 11, 101 (2011).CrossRefGoogle Scholar
  26. 26.
    P. Laokul and S. Maensiri, J. Optoelectron. Adv. M 11, 857 (2009).Google Scholar
  27. 27.
    B. Duong, S. Seraphin, P. Laokul, C. Masingboon, and S. Maensiri, Microsc. Microanal. 14, 326 (2008).CrossRefGoogle Scholar
  28. 28.
    S. Phumying, S. Labuayai, E. Swatsitang, V. Amornkitbamrung, and S. Maensiri, Mater. Res. Bull. 48, 2060 (2013).CrossRefGoogle Scholar
  29. 29.
    X. Tan, G. Li, Y. Zhao, and C. Hu, Mater. Res. Bull. 44, 2160 (2009).CrossRefGoogle Scholar
  30. 30.
    R. Kumar, H. Kumar, R.R. Singh, and P.B. Barman, J. Sol-Gel Sci. Technol. 78, 566 (2016).CrossRefGoogle Scholar
  31. 31.
    M.A. Gabal, Y.M. Al Angari, and H.M. Zaki, J. Magn. Magn. Mater. 363, 6 (2014).CrossRefGoogle Scholar
  32. 32.
    S.M. Hoque, S.S. Kader, D.P. Paul, D.K. Saha, H.N. Das, M.S. Rana, K. Chattopadhyay, and M.A. Hakim, IEEE Trans. Magn. 48, 1839 (2012).CrossRefGoogle Scholar
  33. 33.
    P.M. Prithviraj Swamy, S. Basavaraja, A. Lagashetty, N.S. Rao, R. Nijagunappa, and A. Venkataraman, Bull. Mater. Sci. 34, 1325 (2011).CrossRefGoogle Scholar
  34. 34.
    X.-R. Zhu, Z.-G. Zhu, C. Chen, and H.-L. Shen, J. Nanosci. Nanotechnol. 15, 3182 (2014).CrossRefGoogle Scholar
  35. 35.
    J. Judith Vijaya, G. Sekaran, and M. Bououdina, Ceram. Int. 41, 15 (2014).CrossRefGoogle Scholar
  36. 36.
    R. Bhargava, P.K. Sharma, R.K. Dutta, S. Kumar, A.C. Pandey, and N. Kumar, Mater. Chem. Phys. 120, 393 (2010).CrossRefGoogle Scholar
  37. 37.
    C. Xia, C. Hu, and P. Zhou, J. Exp. Nanosci. 8, 69 (2013).CrossRefGoogle Scholar
  38. 38.
    S.K. Jesudoss, J.J. Vijaya, L.J. Kennedy, P.I. Rajan, H.A. Al-Lohedan, R.J. Ramalingam, K. Kaviyarasu, and M. Bououdina, J. Photochem. Photobiol. B 165, 121 (2016).CrossRefGoogle Scholar
  39. 39.
    M.S. Hossain, S.M. Hoque, S.I. Liba, and S. Choudhury, AIP Adv. (2017).  https://doi.org/10.1063/1.5009925.Google Scholar
  40. 40.
    N. Lenin, K. Sakthipandi, R. Rajesh Kanna, and G. Rajkumar, Ceram. Int. 44, 21866 (2018).CrossRefGoogle Scholar
  41. 41.
    S.A. Mazen and N.I. Abu-Elsaad, J. Magn. Magn. Mater. 324, 3366 (2012).CrossRefGoogle Scholar
  42. 42.
    M. Satalkar and S.N. Kane, J. Phys: Conf. Ser. (2016).  https://doi.org/10.1088/1742-6596/755/1/012050.Google Scholar
  43. 43.
    R. Kesavamoorthi and C.R. Raja, J. Supercond. Nov. Magn. 30, 2535 (2017).CrossRefGoogle Scholar
  44. 44.
    F.S. Tehrani, V. Daadmehr, A.T. Rezakhani, R.H. Akbarnejad, and S. Gholipour, J. Supercond. Nov. Magn. 25, 2443 (2012).CrossRefGoogle Scholar
  45. 45.
    H.S. Ahamad, N.S. Meshram, S.B. Bankar, S.J. Dhoble, and K.G. Rewatkar, Ferroelectrics (2017).  https://doi.org/10.1080/00150193.2017.1362285.Google Scholar
  46. 46.
    S. Joshi, M. Kumar, S. Chhoker, G. Srivastava, M. Jewariya, and V.N. Singh, J. Mol. Struct. 1076, 55 (2014).CrossRefGoogle Scholar
  47. 47.
    B.J. Rani, G. Ravi, R. Yuvakkumar, V. Ganesh, S. Ravichandran, M. Thambidurai, A.P. Rajalakshmi, and A. Sakunthala, Appl. Phys. A-Mater. (2018).  https://doi.org/10.1007/s00339-018-1936-3.Google Scholar
  48. 48.
    M.M. Vadiyar, S.C. Bhise, S.K. Patil, S.A. Patil, D.K. Pawar, A.V. Ghule, P.S. Patil, and S.S. Kolekar, RSC Adv. 5, 45935 (2015).CrossRefGoogle Scholar
  49. 49.
    R. Gao, L. Liu, Z. Hu, P. Zhang, X. Cao, B. Wang, and X. Liu, J. Mater. Chem. A 3, 17598 (2015).CrossRefGoogle Scholar
  50. 50.
    K. Krishnamoorthy, G.K. Veerasubramani, S. Radhakrishnan, and S.J. Kim, J. Nanosci. Nanotechnol. 15, 4409 (2014).CrossRefGoogle Scholar
  51. 51.
    L. Yuan, X.H. Lu, X. Xiao, T. Zhai, J. Dai, F. Zhang, B. Hu, X. Wang, L. Gong, J. Chen, and C. Hu, ACS Nano (2011).  https://doi.org/10.1021/nn2041279.Google Scholar
  52. 52.
    K. Kombaiah, J.J. Vijaya, L.J. Kennedy, M. Bououdina, R.J. Ramalingam, and H.A. Al-Lohedan, Mater. Chem. Phys. 204, 410 (2018).CrossRefGoogle Scholar
  53. 53.
    R.K. Dutta, B.P. Nenavathu, M.K. Gangishetty, and A.V.R. Reddy, Colloids Surf. B 94, 143 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of PhysicsMepco Schlenk Engineering CollegeSivakasiIndia

Personalised recommendations