Phase-Pure Brookite TiO2 as a Highly Active Photocatalyst for the Degradation of Pharmaceutical Pollutants

  • Thi Thuong Huyen TranEmail author
  • Thi Thu Hien Bui
  • Thu Loan Nguyen
  • Hoai Nam Man
  • Thi Kim Chi TranEmail author


Spherical-shaped brookite TiO2 nanoparticles, average size of about ∼ 10 nm, have been prepared by a hydrothermal method at 175°C for 7 h using HCl acid medium at a concentration of 3.0 M and amorphous TiO2 as precursor that was synthesized by the sol–gel method. Under the sunlight equivalent ultraviolet A (UV-A) irradiation, this brookite acts as an efficient photocatalyst for the photodegradation of recalcitrant pharmaceuticals (e.g., cinnamic acid, ibuprofen, and diatrizoic acid). The photocatalytic assay was conducted using a high pharmaceutical load and a low photocatalyst amount, corresponding to a fixed photocatalyst/pharmaceutical mass ratio of 4. The photodegradation of the pharmaceuticals was followed by a combination of ultraviolet/visible (UV/Vis) absorption spectroscopic, total organic carbon (TOC), and electrospray ionisation time-of-flight mass (ESI–TOF–MS) measurements. Scavenger experiments were carried out to confirm the importance of active species including holes and superoxide radicals acting as “door openers” in the photodegradation of pharmaceuticals in terms of aromatic ring opening, thus facilitating complete mineralization.


Brookite nanoparticles photocatalysts photocatalytic activity photodegradation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank the financial support from the Institute of Materials Science, Vietnam Academy of Science and Technology (Project CSL1.02.19) and to thank the National Key Laboratory for Electronic Materials and Devices for experiments and measurements.


  1. 1.
    J.O. Tijani, O.O. Fatoba, G. Madzivire, and L.F. Petrik, Water Air Soil Pollut. 225, 2102 (2014).CrossRefGoogle Scholar
  2. 2.
    C. Wang, H. Liu, and Y. Qu, J. Nanomater. 2013, 1 (2013).Google Scholar
  3. 3.
    A.R. Ribeiro, O.C. Nunes, M.F.R. Pereira, and A.M.T. Silva, Environ. Int. 75, 33 (2015).CrossRefGoogle Scholar
  4. 4.
    F.S. Braz, M.R.A. Silva, F.S. Silva, S.J. Andrade, A.L. Fonseca, and M.M. Kondo, J. Environ. Prot. 05, 620 (2014).CrossRefGoogle Scholar
  5. 5.
    I. Georgaki, E. Vasilaki, and N. Katsarakis, Am. J. Anal. Chem. 05, 518 (2014).CrossRefGoogle Scholar
  6. 6.
    F.H. Li, K. Yao, W.Y. Lv, G.G. Liu, P. Chen, H.P. Huang, and Y.P. Kang, Bull. Environ. Contam. Tox. 94, 479 (2015).CrossRefGoogle Scholar
  7. 7.
    A. Haiss and K. Kümmerer, Chemosphere 62, 294 (2006).CrossRefGoogle Scholar
  8. 8.
    T. Steger-Hartmann, R. Lange, and H. Schweinfurth, Ecotoxicol. Environ. Saf. 42, 274 (1999).CrossRefGoogle Scholar
  9. 9.
    F.S. Murakami, L.S. Bernardi, R.N. Pereira, and B.R. Valente, Pharma. Chem. J. 43, 716 (2009).CrossRefGoogle Scholar
  10. 10.
    W. Elshorbagy, Water Treatment, ed. A.E. Segneanu, C. Orbeci, C. Lazau, P. Sfirloaga, P. Vlazan, C. Bandas, and I. Grozescu (London: InTech, 2013), p. 53.CrossRefGoogle Scholar
  11. 11.
    M. Carballa, F. Omil, J.M. Lema, M. Llompart, C. García-Jares, I. Rodríguez, M. Gómez, and T. Ternes, Water Res. 38, 2918 (2004).CrossRefGoogle Scholar
  12. 12.
    M. Carballa, F. Omil, A.C. Alder, and J.M. Lema, Water Sci. Technol. 53, 109 (2006).CrossRefGoogle Scholar
  13. 13.
    A.S. Stasinakis, Glob. NEST J. 10, 376 (2008).Google Scholar
  14. 14.
    R. Andreozzi, Catal. Today 53, 51 (1999).CrossRefGoogle Scholar
  15. 15.
    M.R. Hoffmann, S.T. Martin, W. Choi, and D.W. Bahnemann, Chem. Rev. 95, 69 (1995).CrossRefGoogle Scholar
  16. 16.
    W. Wu, C. Jiang, and V.A.L. Roy, Nanoscale 7, 38 (2015).CrossRefGoogle Scholar
  17. 17.
    S. Leong, A. Razmjou, K. Wang, K. Hapgood, X. Zhang, and H. Wang, J. Membr. Sci. 472, 167 (2014).CrossRefGoogle Scholar
  18. 18.
    V. Augugliaro, M. Bellardita, V. Loddo, G. Palmisano, L. Palmisano, and S. Yurdakal, J. Photochem. Photobiol. C: Photochem. Rev. 13, 224 (2012).CrossRefGoogle Scholar
  19. 19.
    J. Herrmann, Catal. Today 53, 115 (1999).CrossRefGoogle Scholar
  20. 20.
    H. Xu, S. Ouyang, L. Liu, P. Reunchan, N. Umezawa, and J. Ye, J. Mater. Chem. A 2, 12642 (2014).CrossRefGoogle Scholar
  21. 21.
    T.K. Tseng, Y.S. Lin, Y.J. Chen, and H. Chu, Int. J. Mol. Sci. 11, 2336 (2010).CrossRefGoogle Scholar
  22. 22.
    A. Fujishima and K. Honda, Nature 238, 37 (1972).CrossRefGoogle Scholar
  23. 23.
    T. Hirakawa, K. Yawata, and Y. Nosaka, Appl. Catal. A Gen. 325, 105 (2007).CrossRefGoogle Scholar
  24. 24.
    J. Mo, Y. Zhang, Q. Xu, J.J. Lamson, and R. Zhao, Atmos. Environ. 43, 2229 (2009).CrossRefGoogle Scholar
  25. 25.
    D.W. Bahnemann and P.K. Robertson, Environmental Photochemistry, ed. O. Tokode, R. Prabhu, L.A. Lawton, and P.K.J. Robertson (Berlin: Springer, 2015), p. 159.Google Scholar
  26. 26.
    A. Di Paola, M. Bellardita, and L. Palmisano, Catalysts 3, 36 (2013).CrossRefGoogle Scholar
  27. 27.
    M. Mohamad, B.U. Haq, R. Ahmed, A. Shaari, N. Ali, and R. Hussain, Mater. Sci. Semicon. Proc. 31, 405 (2015).CrossRefGoogle Scholar
  28. 28.
    D.A.H. Hanaor and C.C. Sorrell, J. Mater. Sci. 46, 855 (2011).CrossRefGoogle Scholar
  29. 29.
    J. Zhang, P. Zhou, J. Liu, and J. Yu, Phys. Chem. Chem. Phys. 16, 20382 (2014).CrossRefGoogle Scholar
  30. 30.
    R. Kaplan, B. Erjavec, G. Dražić, J. Grdadolnik, and A. Pintar, Appl. Catal. B 181, 465 (2016).CrossRefGoogle Scholar
  31. 31.
    Z. Li, S. Cong, and Y. Xu, ACS Catal. 4, 3273 (2014).CrossRefGoogle Scholar
  32. 32.
    T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, and M. Batzill, Sci. Rep. 4, 4043 (2014).CrossRefGoogle Scholar
  33. 33.
    W. Hu, L. Li, G. Li, C. Tang, and L. Sun, Cryst. Growth Des. 9, 3676 (2009).CrossRefGoogle Scholar
  34. 34.
    D. Reyes-Coronado, G. Rodríguez-Gattorno, M.E. Espinosa-Pesqueira, C. Cab, R. de Coss, and G. Oskam, Nanotechnology 19, 145605 (2008).CrossRefGoogle Scholar
  35. 35.
    Q.D. Truong, L.X. Dien, D.-V.N. Vo, and T.S. Le, J. Solid State Chem. 251, 143 (2017).CrossRefGoogle Scholar
  36. 36.
    A. Pottier, C. Chanéac, E. Tronc, L. Mazerolles, and J.-P. Jolivet, J. Mater. Chem. 11, 1116 (2001).CrossRefGoogle Scholar
  37. 37.
    Y. Cao, X. Li, Z. Bian, A. Fuhr, D. Zhang, and J. Zhu, Appl. Catal. B 180, 551 (2016).CrossRefGoogle Scholar
  38. 38.
    V. Štengl and D. Králová, Mater. Chem. Phys. 129, 794 (2011).CrossRefGoogle Scholar
  39. 39.
    A.D. Paola, G. Cufalo, M. Addamo, M. Bellardita, R. Campostrini, M. Ischia, R. Ceccato, and L. Palmisano, Colloids. Surf. A Physicochem. Eng. Asp. 317, 366 (2008).CrossRefGoogle Scholar
  40. 40.
    X. Shen, B. Tian, and J. Zhang, Catal. Today 201, 151 (2013).CrossRefGoogle Scholar
  41. 41.
    J.-G. Li, T. Ishigaki, and X. Sun, J. Phys. Chem. C 111, 4969 (2007).CrossRefGoogle Scholar
  42. 42.
    B.K. Mutuma, G.N. Shao, W.D. Kim, and H.T. Kim, J. Colloid Interface Sci. 442, 1 (2015).CrossRefGoogle Scholar
  43. 43.
    T. Ozawa, M. Iwasaki, H. Tada, T. Akita, K. Tanaka, and S. Ito, J. Colloid Interface Sci. 281, 510 (2005).CrossRefGoogle Scholar
  44. 44.
    Y. Min-Han, C. Po-Chin, T. Min-Chiao, C. Ting-Ting, C.I. Chun, C. Hsin-Tien, and L. Chi-Young, CrystEngComm 16, 441 (2014).CrossRefGoogle Scholar
  45. 45.
    T.A. Kandiel, A. Feldhoff, L. Robben, R. Dillert, and D.W. Bahnemann, Chem. Mater. 22, 2050 (2010).CrossRefGoogle Scholar
  46. 46.
    S. Cassaignon, M. Koelsch, and J.-P. Jolivet, J. Mater. Sci. 42, 6689 (2007).CrossRefGoogle Scholar
  47. 47.
    Y. Liao, W. Que, Q. Jia, Y. He, J. Zhang, and P. Zhong, J. Mater. Chem. 22, 7937 (2012).CrossRefGoogle Scholar
  48. 48.
    L. Andronic, D. Perniu, and A. Duta, J. Sol–Gel. Sci. Technol. 66, 472 (2013).CrossRefGoogle Scholar
  49. 49.
    M.E. Simonsen and E.G. Søgaard, J. Sol–Gel. Sci. Technol. 53, 485 (2010).CrossRefGoogle Scholar
  50. 50.
    M. Altomare, M.V. Dozzi, G.L. Chiarello, A.D. Paola, L. Palmisano, and E. Selli, Catal. Today 252, 184 (2015).CrossRefGoogle Scholar
  51. 51.
    H. Cheng, J. Ma, Z. Zhao, and L. Qi, Chem. Mater. 7, 663 (1995).CrossRefGoogle Scholar
  52. 52.
    Z. He, Y. Su, S. Yang, L. Wu, S. Liu, C. Ling, and H. Yang, Sci. Bull. 61, 1818 (2016).CrossRefGoogle Scholar
  53. 53.
    M.J. López-Muñoz, A. Revilla, and G. Alcalde, Catal. Today 240, 138 (2015).CrossRefGoogle Scholar
  54. 54.
    J.C. Yu, J. Yu, W. Ho, and L. Zhang, Chem. Commun. 19, 1942 (2001).CrossRefGoogle Scholar
  55. 55.
    R. Buonsanti, V. Grillo, E. Carlino, C. Giannini, T. Kipp, R. Cingolani, and P.D. Cozzoli, JACS 130, 11223 (2008).CrossRefGoogle Scholar
  56. 56.
    J. Pan and S.P. Jiang, J. Colloid Interface Sci. 469, 25 (2016).CrossRefGoogle Scholar
  57. 57.
    K. Chen, L. Zhu, and K. Yang, J. Environ. Sci. China 27, 232 (2015).CrossRefGoogle Scholar
  58. 58.
    E. Holmström, O.S. Ghan, H. Asakawa, Y. Fujita, T. Fukuma, O.S. Kamimura, T. Ohno, and A.S. Foster, J. Phys. Chem. C 121, 20790 (2017).CrossRefGoogle Scholar
  59. 59.
    W.-K. Li, X.-Q. Gong, G. Lu, and A. Selloni, J. Phys. Chem. C 112, 6594 (2008).CrossRefGoogle Scholar
  60. 60.
    H. Lin, L. Li, M. Zhao, X. Huang, X. Chen, G. Li, and R. Yu, JACS 134, 8328 (2012).CrossRefGoogle Scholar
  61. 61.
    T.-D. Nguyen-Phan, E.J. Kim, S.H. Hahn, W.-J. Kim, and E.W. Shin, J. Colloid Interface Sci. 356, 138 (2011).CrossRefGoogle Scholar
  62. 62.
    Y. Zou, X. Tan, T. Yu, Y. Li, Q. Shang, and W. Wang, Mater. Lett. 132, 182 (2014).CrossRefGoogle Scholar
  63. 63.
    J. Zhang, S. Yan, L. Fu, F. Wang, M. Yuan, G. Luo, Q. Xu, X. Wang, and C. Li, Chin. J. Catal. 32, 983 (2011).CrossRefGoogle Scholar
  64. 64.
    J. Xie, X. Lü, J. Liu, and H. Shu, Pure Appl. Chem. 81, 2407 (2009).CrossRefGoogle Scholar
  65. 65.
    M. Inada, K. Iwamoto, N. Enomoto, and J. Hojo, J. Ceram. Soc. Jpn. 119, 451 (2011).CrossRefGoogle Scholar
  66. 66.
    B. Zhao, F. Chen, Y. Jiao, and J. Zhang, J. Mater. Chem. 20, 7990 (2010).CrossRefGoogle Scholar
  67. 67.
    M. Bellardita, A. Di Paola, B. Megna, and L. Palmisano, Appl. Catal. B 201, 150 (2017).CrossRefGoogle Scholar
  68. 68.
    N. Tomić, M. Grujić-Brojčin, N. Finčur, B. Abramović, B. Simović, J. Krstić, B. Matović, and M. Šćepanović, Mater. Chem. Phys. 163, 518 (2015).CrossRefGoogle Scholar
  69. 69.
    R. Kaplan, B. Erjavec, and A. Pintar, Appl. Catal. A 489, 51 (2015).CrossRefGoogle Scholar
  70. 70.
    J.C.C. Da Silva, J.A.R. Teodoro, R.J.C.F. Afonso, S.F. Aquino, and R. Augusti, J. Mass Spectrom. 49, 145 (2014).CrossRefGoogle Scholar
  71. 71.
    T.M. Khedra, S.M. El-Sheikh, A. Hakki, A.A. Ismail, W.A. Badawy, and D.W. Bahnemann, J. Photochem. Photobiol. A Chem. 346, 530 (2017).CrossRefGoogle Scholar
  72. 72.
    N. Jallouli, L.M. Pastrana-Martínez, A.R. Ribeiro, N.F.F. Moreira, J.L. Faria, O. Hentati, A.M.T. Silva, and M. Ksibi, Chem. Eng. J. 334, 976 (2018).CrossRefGoogle Scholar
  73. 73.
    H.T.T. Tran, H. Kosslick, M.F. Ibad, C. Fischer, U. Bentrup, T.H. Vuong, L.Q. Nguyen, and A. Schulz, Appl. Catal. B 200, 647 (2017).CrossRefGoogle Scholar
  74. 74.
    T.T.H. Tran, H. Kosslick, A. Schulz, and Q.L. Nguyen, Adv. Nat. Sci. Nanosci. Nanotechnol. 8, 15011 (2017).CrossRefGoogle Scholar
  75. 75.
    S. Mahshid, M. Askari, and M.S. Ghamsari, J. Mater. Process. Technol. 189, 296 (2007).CrossRefGoogle Scholar
  76. 76.
    Y. Wang, L. Li, X. Huang, Q. Li, and G. Li, RSC Adv. 5, 34302 (2015).CrossRefGoogle Scholar
  77. 77.
    H. Zhang and J.F. Banfield, J. Phys. Chem. B 104, 3481 (2000).CrossRefGoogle Scholar
  78. 78.
    M. Zhao, H. Xu, H. Chen, S. Ouyang, N. Umezawa, D. Wang, and J. Ye, J. Mater. Chem. A 3, 2331 (2015).CrossRefGoogle Scholar
  79. 79.
    Y. Hu, H.-L. Tsai, and C.-L. Huang, J. Eur. Ceram. Soc. 23, 691 (2003).CrossRefGoogle Scholar
  80. 80.
    K.J.A. Raj and B. Viswanathan, Indian J. Chem. 48A, 1378 (2009).Google Scholar
  81. 81.
    L. Jiqiao and H. Baiyun, Int. J. Refract. Met. Hard Mater. 19, 89 (2001).CrossRefGoogle Scholar
  82. 82.
    J. Choina, Ch. Fischer, G.-U. Flechsig, H. Kosslick, V.A. Tuan, N.D. Tuyen, N.A. Tuyen, and A. Schulz, J. Photochem. Photobiol. A 274, 108 (2014).CrossRefGoogle Scholar
  83. 83.
    J. Choina, H. Kosslick, Ch Fischer, G.-U. Flechsig, L. Frunza, and A. Schulz, Appl. Catal. B 129, 589 (2013).CrossRefGoogle Scholar
  84. 84.
    R.I. Bickley, T.G. Carreno, J.S. Lees, L. Palmisano, and R.J.D. Tilley, J. Solid State Chem. 92, 178 (1991).CrossRefGoogle Scholar
  85. 85.
    T. Ohno, K. Sarukawa, K. Tokieda, and M. Matsumura, J. Catal. 203, 82 (2001).CrossRefGoogle Scholar
  86. 86.
    H. Masaki, N. Okamoto, S. Sakaki, and H. Sakurai, Biol. Pharm. Bull. 20, 304 (1997).CrossRefGoogle Scholar
  87. 87.
    M.J. So and E.J. Cho, Prev. Nutr. Food Sci. 19, 129 (2014).CrossRefGoogle Scholar
  88. 88.
    Z. Sroka and W. Cisowski, Food Chem. Toxicol. 41, 753 (2003).CrossRefGoogle Scholar
  89. 89.
    R.R.N. Marques, M.J. Sampaio, P.M. Carrapiço, C.G. Silva, S. Morales-Torres, G. Dražić, J.L. Faria, and A.M.T. Silva, Catal. Today 209, 108 (2013).CrossRefGoogle Scholar
  90. 90.
    Y. Wang, R. Shi, J. Lin, and Y. Zhu, Appl. Catal. B 100, 179 (2010).CrossRefGoogle Scholar
  91. 91.
    J. Liu, R. Liu, H. Li, W. Kong, H. Huang, Y. Liu, and Z. Kang, Dalton Trans. 43, 12982 (2014).CrossRefGoogle Scholar
  92. 92.
    H. Zangeneh, A.A.L. Zinatizadeh, M. Habibi, M. Akia, and M.H. Isa, J. Ind. Eng. Chem. 26, 1 (2015).CrossRefGoogle Scholar
  93. 93.
    M. Lazar, S. Varghese, and S. Nair, Catalysts 2, 572 (2012).CrossRefGoogle Scholar
  94. 94.
    A. Ibhadon and P. Fitzpatrick, Catalysts 3, 189 (2013).CrossRefGoogle Scholar
  95. 95.
    X. Pang, C. Chen, H. Ji, Y. Che, W. Ma, and J. Zhao, Molecules 19, 16291 (2014).CrossRefGoogle Scholar
  96. 96.
    J.C. Colmenares and R. Luque, Chem. Soc. Rev. 43, 765 (2014).CrossRefGoogle Scholar
  97. 97.
    M. Marković, M. Jović, D. Stanković, V. Kovačević, G. Roglić, G. Gojgić-Cvijović, and D. Manojlović, Sci. Total Environ. 505, 1148 (2015).CrossRefGoogle Scholar
  98. 98.
    L.G. Devi and K.E. Rajashekhar, J. Mol. Catal. A Chem. 334, 65 (2011).CrossRefGoogle Scholar
  99. 99.
    J. Jeong, J. Jung, W.J. Cooper, and W. Song, Water Res. 44, 4391 (2010).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Institute of Materials Science (IMS), Academy of Science and Technology (VAST) VietnamHanoiVietnam

Personalised recommendations