Advertisement

Flower-Like ZnO-Decorated Polyaniline–Graphene Oxide Nanocomposite for Electrochemical Oxidation of Imidacloprid: A Hybrid Nanocomposite Sensor

  • Anita K. Tawade
  • D. Mohan Kumar
  • Paurnima Talele
  • Kiran Kumar K. Sharma
  • Shivaji N. TayadeEmail author
Article
  • 4 Downloads

Abstract

A surfactant-based soft-template method has been used to synthesize flower-like zinc oxide–polyaniline–graphene oxide (ZnO–PANI–GO) hybrid nanocomposites. Mineralization of an agricultural organic pollutant, viz. imidacloprid (Imd), in aqueous environment is investigated by cyclic voltammetry (CV) using a glassy carbon (GCE) modified with ZnO–PANI–GO hybrid nanocomposite as working electrode. CV of the modified ZnO–PANI–GO/GCE hybrid nanocomposite electrode in the presence of Imd in acetate buffer (pH 5.8) revealed an oxidation potential of 0.36 V. The linear range of detection was evaluated using Imd concentrations from 1.25 × 10−7 M to 2.12 × 10−6 M. Limits of detection and quantification of 1.3 × 10−8 M and 1.3 × 10−7 M were calculated, being the lowest reported to date compared with other techniques using nano/nanocomposite materials as probe or modified electrodes. These results suggest that hybrid nanocomposites can be cost-effective materials for detection of Imd pesticide residue. Recovery testing using various samples exhibited 100% recovery.

Keywords

Hybrid nanocomposites cyclic voltammetry swollen liquid-crystal method imidacloprid pesticide residue 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Yamamoto I et al. (eds.), Nicotinoid Insecticides and the Nicotinic Acetylcholine Receptor (Springer, Japan, 1999). https://www.springer.com/gp/book/9784431702139. Accessed Dec 2018.
  2. 2.
    K. Matsuda, M. Shimomura, M. Ihara, M. Akamatsu, and D.B. Sattelle, Biosci. Biotechnol. Biochem. 69, 1442 (2005).  https://doi.org/10.1007/s10158-008-0069-3.CrossRefGoogle Scholar
  3. 3.
    F. Al, A. Qurainy, and J.W. Megeed, Appl. Sci. 6, 1818 (2009).Google Scholar
  4. 4.
    M.L. Chin-Chen, J. Esteve-Romero, and S. Carda-Broch, J. AOAC Int. 92, 1551 (2009).Google Scholar
  5. 5.
    K.C. Ting, E.G. Zhou, and N. Saini, J. AOAC Int. 87, 997 (2004).  https://doi.org/10.1002/adic.200790015.Google Scholar
  6. 6.
    A. Navalon, A. González-Casado, R. El-Khattabia, J.L. Vilchez, and A.R. Fernández-Alba, Analyst 122, 579 (1997).  https://doi.org/10.1016/s0021-9673(99)00879-1.CrossRefGoogle Scholar
  7. 7.
    J.L. Vılchez, M.C. Valencia, A. Navalón, B. Molinero-Morales, and L.F. Capitán-Vallvey, Anal. Chim. Acta 439, 299 (2001).  https://doi.org/10.1007/s00604-006-0487-z.CrossRefGoogle Scholar
  8. 8.
    J.L. Vilchez, R. El-Khattabi, R. Blanc, and A.N. Navaló, Anal. Chim. Acta 371, 247 (1998).  https://doi.org/10.1016/j.cclet.2015.12.032.CrossRefGoogle Scholar
  9. 9.
    L. Sanchez-Hernández, D. Hernández-Domınguez, and J. Bernal, J. Chromatogr. A 1359, 317 (2014).  https://doi.org/10.1093/jisesa/iev053.CrossRefGoogle Scholar
  10. 10.
    A.S. Carretero, C. Cruces-Blanco, S.P. Dura, and A.F. Gutierrez, J. Chromatogr. A 1003, 189 (2003).  https://doi.org/10.1007/s00604-006-0487-z.CrossRefGoogle Scholar
  11. 11.
    J.K. Lee, K.C. Ahn, O.S. Park, S.Y. Kang, and B.D. Hammock, J. Agric. Food Chem. 49, 2159 (2001).  https://doi.org/10.1016/j.toxicon.2012.08.011.CrossRefGoogle Scholar
  12. 12.
    V.J. Guzsvny, F.F. Gal, L.J. Bjelica, and S.N. Okresz, J. Serb. Chem. Soc. 70, 735 (2005).  https://doi.org/10.1016/j.cattod.2010.01.020.CrossRefGoogle Scholar
  13. 13.
    W. Lei, Q. Wu, W. Si, Z. Gu, Y. Zhang, J. Deng, and Q. Hao, Sens. Actuators B 183, 102 (2013).  https://doi.org/10.1007/s00216-018-1372-4.CrossRefGoogle Scholar
  14. 14.
    M. Chen, Y. Meng, W. Zhang, J. Zhou, J. Xie, and G. Diao, Electrochim. Acta 108, 1 (2013).  https://doi.org/10.1016/j.electacta.2013.06.050.CrossRefGoogle Scholar
  15. 15.
    V. Guzsvány, M. Kádár, Z. Papp, L. Bjelica, F. Gaal, and K. Toth, Electroanalysis 20, 291 (2008).  https://doi.org/10.1002/elan.200704057.CrossRefGoogle Scholar
  16. 16.
    A. Kumaravel and M. Chandrasekaran, Sens. Actuators B 158, 319 (2011).  https://doi.org/10.1016/j.snb.2011.06.028.CrossRefGoogle Scholar
  17. 17.
    T. Thriveni, J.R. Kumar, J.Y. Lee, and N.Y. Sreedhar, Environ. Monit. Assess. 151, 9 (2009).  https://doi.org/10.1007/s10661-008-0283-9.CrossRefGoogle Scholar
  18. 18.
    H. Mercan and R. Inam, Clean 36, 913 (2008).  https://doi.org/10.1016/j.cclet.2015.12.032.Google Scholar
  19. 19.
    E. Giannakopoulos, P. Stivaktakis, and Y. Deligiannakis, Langmuir 24, 3955 (2008).  https://doi.org/10.1016/j.chemosphere.2016.01.040.CrossRefGoogle Scholar
  20. 20.
    A. Kumaravel and M. Chandrasekaran, J. Electroanal. Chem. 638, 231 (2010).  https://doi.org/10.1016/j.jelechem.2009.11.002.CrossRefGoogle Scholar
  21. 21.
    A. Kumaravel and M. Chandrasekaran, J. Electroanal. Chem. 650, 163 (2011).  https://doi.org/10.1016/j.snb.2011.06.028.CrossRefGoogle Scholar
  22. 22.
    N.A. Kotov, Nature 442, 254 (2006).  https://doi.org/10.1038/442254a.CrossRefGoogle Scholar
  23. 23.
    S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, and R.S. Ruoff, Nature 442, 282 (2006).  https://doi.org/10.1016/j.carbon.2007.02.034.CrossRefGoogle Scholar
  24. 24.
    A. Lerf, H. He, M. Forster, and J. Klinowski, J. Phys. Chem. B 102, 4477 (1998).  https://doi.org/10.1007/978-94-007-4948-1_5.CrossRefGoogle Scholar
  25. 25.
    H.P. Huang and J.J. Zhu, Chin. J. Anal. Chem. 39, 963 (2011).  https://doi.org/10.1016/S1872-2040(10)60450-1.CrossRefGoogle Scholar
  26. 26.
    F. Feng, Z. Zhang, M. Xu, and J. Liu, Hazard. Mater. 201, 250 (2012).  https://doi.org/10.1007/128_2013_448.Google Scholar
  27. 27.
    Y. Wang, Y. Li, L. Tang, J. Lu, and J. Li, Electrochem. Commun. 11, 889 (2009).  https://doi.org/10.1016/j.elecom.2009.02.013.CrossRefGoogle Scholar
  28. 28.
    R. Deepak, K. Nitasha, T. Sanjai, and P. Gurav, J. Environ. Manag. 206, 749 (2017).  https://doi.org/10.1016/j.jenvman.2017.11.037.Google Scholar
  29. 29.
    S. Mishra, N.G. Shimpi, and T. Sen, J. Polym. Res. 49, 20 (2013).  https://doi.org/10.1007/s10965-012-0049-5.Google Scholar
  30. 30.
    S.J. Su and N. Kuramoto, Synth. Met. 114, 147 (2000).  https://doi.org/10.1016/S0379-6779(00)00238-1.CrossRefGoogle Scholar
  31. 31.
    J.W. Kim, S.G. Kim, H.J. Choi, and M.S. Jhon, Macromol. Rapid Commun. 20, 450 (1999).  https://doi.org/10.1002/marc.200500181.CrossRefGoogle Scholar
  32. 32.
    C. Wang, Y.H. Zhang, J.B. Gao, W.J. Zhang, Y.F. Lu, Y.B. Bai, T.J. Li, L.J. Li, and Y. Wei, Chem. J. Chin. Univ. 20, 1491 (1999).  https://doi.org/10.1080/00150190500328528.Google Scholar
  33. 33.
    B.Z. Tang, Chemtech 29, 7 (1999).  https://doi.org/10.1002/ange.201801653.Google Scholar
  34. 34.
    B.Z. Tang, Y. Geng, J.W.Y. Lam, B. Li, X. Jing, X. Wang, F. Wang, A.B. Pakhomov, and X.X. Zhang, Chem. Mater. 11, 1581 (1999).  https://doi.org/10.1016/j.ijleo.2011.06.066.CrossRefGoogle Scholar
  35. 35.
    S.K. Shukla, N.B. Singh, and R.P. Rastogi, Indian J. Eng. Mater. Sci. 20, 319 (2013).Google Scholar
  36. 36.
    M. Dhingra, L. Kumar, S. Shrivastava, P.S. Kumar, and S. Annapoorni, Bull. Mater. Sci. 36, 647 (2013).  https://doi.org/10.1007/s12034-013-0508-6.CrossRefGoogle Scholar
  37. 37.
    A. Alaa, A. Aljabali, J. Elaine Barclay, N.J. Butt, P.L. George, and J.E. David, Dalton Trans. 39, 7569 (2010).  https://doi.org/10.1039/c0dt00495b.CrossRefGoogle Scholar
  38. 38.
    C. Daniela, V.D. Marcano, M.J. Kosynkin, A.S. Berlin, S. Zhengzong, S. Alexander, B.L. Alemany, W. Lu, and M.T. James, ACS Nano 4, 4806 (2010).  https://doi.org/10.1021/nn1006368.CrossRefGoogle Scholar
  39. 39.
    M. Alam, N. Alandis, A.A. Ansari, and M.R. Shaik, J. Nanomater. 5, 2013 (2013).  https://doi.org/10.1155/2013/157810.Google Scholar
  40. 40.
    G. Eda, Y.Y. Lin, C. Mattevi, H. Yamaguchi, H.A. Chen, I.S. Chen, C.W. Chen, and M. Chhowalla, Adv. Mater. 22, 505 (2010).  https://doi.org/10.1002/adma.200901996.CrossRefGoogle Scholar
  41. 41.
    G. Eda and M. Chhowalla, Adv. Mater. 22, 2392 (2010).  https://doi.org/10.1002/adma.200903689.CrossRefGoogle Scholar
  42. 42.
    W. Lei, Z. Han, W. Si, Q. Hao, Y. Zhang, M. Xia, and F. Wang, Chem ElectroChem. 1, 1063 (2014).  https://doi.org/10.5599/jese.630.Google Scholar
  43. 43.
    M.B. Brahim, H.B. Ammar, R. Abdelhédi, and Y. Samet, Chin. Chem. Lett. 27, 666 (2016).  https://doi.org/10.1016/j.cclet.2015.12.032.CrossRefGoogle Scholar
  44. 44.
    M. Zhang, H.T. Zhao, T.J. Xie, X. Yang, A.J. Dong, H. Zhang, J. Wang, and Z.Y. Wang, Sens. Actuators B 252, 991 (2017).  https://doi.org/10.1002/elan.201501041.CrossRefGoogle Scholar
  45. 45.
    W. Si, W. Lei, Q. Hao, X. Xia, H. Zhang, J. Li, Q. Li, and R. Cong, Electrochim. Acta 212, 784 (2016).  https://doi.org/10.1016/j.electacta.2016.07.063.CrossRefGoogle Scholar
  46. 46.
    M.R. Majidi and S. Ghaderi, J. Electroanal. Chem. 792, 46 (2017).  https://doi.org/10.1016/j.jelechem.2017.03.028.CrossRefGoogle Scholar
  47. 47.
    S. Li, C. Liu, G. Yin, J. Luo, and Z. Zhang, Microchim. Acta 183, 3109 (2016).  https://doi.org/10.1007/s00604-017-2238-8.Google Scholar
  48. 48.
    M.R. Majidi, R.F.B. Baj, and M. Bamorowat, Measurement 93, 29 (2016).  https://doi.org/10.1016/j.snb.2019.126682.CrossRefGoogle Scholar
  49. 49.
    V. Urbanová, A. Bakandritsos, and P. Jakubec, Biosens. Bioelectron. 89, 532 (2017).  https://doi.org/10.1016/j.bios.2016.03.039.CrossRefGoogle Scholar
  50. 50.
    Y. Dai and X. Kan, Chem. Commun. 53, 11755 (2017).  https://doi.org/10.1039/C7CC06329F.CrossRefGoogle Scholar
  51. 51.
    X. Zhang, Z. Sun, Z. Cui, and H. Li, Sens. Actuators B 191, 313 (2014).  https://doi.org/10.1016/j.snb.2019.02.084.CrossRefGoogle Scholar
  52. 52.
    L. Kong, X. Jiang, Y. Zeng, T. Zhou, and G. Shi, Sens. Actuators B 185, 424 (2013).  https://doi.org/10.1016/j.snb.2013.05.033.CrossRefGoogle Scholar
  53. 53.
    M. Zhang, H.T. Zhao, and T.J. Xie, Sens. Actuators B 252, 991 (2017).  https://doi.org/10.1021/jacs.5b12848.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Nanoscience and BiotechnologyShivaji UniversityKolhapurIndia
  2. 2.Department of Agrochemicals and Pest ManagementShivaji UniversityKolhapurIndia
  3. 3.Indian Institute of Technology Madras (IITM)ChennaiIndia
  4. 4.Department of ChemistryShivaji UniversityKolhapurIndia

Personalised recommendations