Advertisement

Dry and Wet Ball Mill Syntheses of Sb2Se3 from Its Constituent Elements

  • Alok Kumar Jain
  • Abubakar Abdullahi Sifawa
  • Saumitra Kamalakar Vajandar
  • Min-Qin Ren
  • Thomas Osipowicz
  • P. MalarEmail author
Article
  • 2 Downloads

Abstract

Binary antimony selenide (Sb2Se3) compound was synthesized by the mechanical alloying of constituent elements. Both dry and wet mill syntheses methods were applied. Dry milling was done in Ar atmosphere. Wet milling was done using toluene and n-butyl alcohol as a process control agent (PCA). It was found that Sb2Se3 phase was formed using toluene as PCA, whereas usage of n-butyl alcohol led to the formation of mixed phases consisting of Sb2Se3 and unreacted antimony and selenium. Single phase Sb2Se3 was obtained in 6 h and 13 h, respectively, through dry and wet milling, which was confirmed by x-ray diffraction (XRD) and Raman spectroscopy studies. Diffused reflectance spectroscopy studies of as-milled Sb2Se3 yielded direct band gap values of 1.10 eV and 1.18 eV for dry and wet milled samples, respectively. Particle-induced x-ray emission studies revealed that there is no impurity present in the compound and confirmed near stoichiometry. High-resolution transmission electron microscopy observations showed d spacing values of 0.28 nm for dry and toluene milled samples that corresponds to the (221) plane. The milled Sb2Se3 was used as source material and thin films were grown using the e-beam evaporation method. The as-grown films were characterized using XRD, Raman spectroscopy that showed a single phase nature of the films and optical transmission spectra analysis yielding a band gap of 1.29 eV. Electrical resistivity of the films was measured using a two probe method showing a resistivity of 1.6 × 107 Ω cm. Hot point probe measurement indicated that the as-grown Sb2Se3 films are p-type in nature.

Keywords

Antimony selenide mechanical alloying XRD single phase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors would like to acknowledge the financial support provided through DST-SERB (YSS) funding for carrying out this research work (Grant No. YSS/2015/00957). The authors would also like to thank SRM Central Instrumentation facility (SCIF) for providing facilities such as XRD, Raman spectroscopy, UV–Vis-NIR spectroscopy and TEM to carry out research work. The authors also thank Prof. S. Kasiviswanathan, IIT Madras, India, for his support in electrical properties measurements and interpretation. The authors declare that they have no conflict of interest.

References

  1. 1.
    M. Malligavathy, R.T. Ananth Kumar, C. Das, S. Asokan, and D. Pathinettam Padiyan, J. Non. Cryst. Solids 429, 93 (2015).CrossRefGoogle Scholar
  2. 2.
    T.Y. Ko, M. Shellaiah, and K.W. Sun, Sci. Rep. 6, 1 (2016).CrossRefGoogle Scholar
  3. 3.
    J. Anversa, S. Chakraborty, P. Piquini, and R. Ahuja, Appl. Phys. Lett. 108, 2601 (2016).CrossRefGoogle Scholar
  4. 4.
    W. Luo, A. Calas, C. Tang, F. Li, L. Zhou, L. Mai, and A.C.S. Appl, Mater. Interfaces 8, 35219 (2016).CrossRefGoogle Scholar
  5. 5.
    M.R. Hasan, E.S. Arinze, A.K. Singh, V.P. Oleshko, S. Guo, A. Rani, Y. Cheng, I. Kalish, M.E. Zaghloul, M.V. Rao, N.V. Nguyen, A. Motayed, A.V. Davydov, S.M. Thon, and R. Debnath, Adv. Electron. Mater. 2, 100182 (2016).Google Scholar
  6. 6.
    J. Ma, Y. Wang, Y. Wang, Q. Chen, J. Lian, and W. Zheng, J. Phys. Chem. C 113, 13588 (2009).CrossRefGoogle Scholar
  7. 7.
    Z. Li, X. Liang, G. Li, H. Liu, H. Zhang, J. Guo, and J. Chen, Nat. Commun. 10, 125 (2019).Google Scholar
  8. 8.
    J. Lu, Q. Han, X. Yang, L. Lu, and X. Wang, Mater. Lett. 62, 2415 (2008).CrossRefGoogle Scholar
  9. 9.
    Q. Xie, Z. Liu, M. Shao, L. Kong, W. Yu, and Y. Qian, J. Cryst. Growth 252, 570 (2003).CrossRefGoogle Scholar
  10. 10.
    I.S. Virt, I.O. Rudyj, I.V. Kurilo, I.Y. Lopatynskyi, L.F. Linnik, V.V. Tetyorkin, P. Potera, and G. Luka, Semiconductors 47, 1003 (2013).CrossRefGoogle Scholar
  11. 11.
    L. Guo, G. Ji, X. Chang, M. Zheng, Y. Shi, and Y. Zheng, Nanotechnology 21, 3 (2010).Google Scholar
  12. 12.
    J. Shen and R. Blachik, Thermochim. Acta 399, 245 (2003).CrossRefGoogle Scholar
  13. 13.
    W. Li, M. Zhou, H. Li, K. Wang, S. Cheng, and K. Jiang, Electrochem. Commun. 60, 74 (2015).CrossRefGoogle Scholar
  14. 14.
    K.J. Tiwari, M.Q. Ren, S. Kamalakar Vajandar, T. Osipowicz, A. Subrahmanyam, and P. Malar, Sol. Energy 160, 56 (2018).CrossRefGoogle Scholar
  15. 15.
    K.Y. Rajpure, C.D. Lokhande, and C.H. Bhosale, Mater. Res. Bull. 34, 1079 (1999).CrossRefGoogle Scholar
  16. 16.
    B. Yang, D.J. Xue, M. Leng, J. Zhong, L. Wang, H. Song, Y. Zhou, and J. Tang, Sci. Rep. 5, 1 (2015).Google Scholar
  17. 17.
    Y. Lai, C. Han, X. Lv, J. Yang, F. Liu, J. Li, and Y. Liu, J. Electroanal. Chem. 671, 73 (2012).CrossRefGoogle Scholar
  18. 18.
    G.X. Liang, X.H. Zhang, H.L. Ma, J.G. Hu, B. Fan, Z.K. Luo, Z.H. Zheng, J.T. Luo, and P. Fan, Sol. Energy Mater. Sol. Cells 160, 257 (2017).CrossRefGoogle Scholar
  19. 19.
    X. Liu, J. Chen, M. Luo, M. Leng, Z. Xia, Y. Zhou, S. Qin, D.J. Xue, L. Lv, H. Huang, D. Niu, J. Tang, and A.C.S. Appl, Mater. Interfaces 6, 10687 (2014).CrossRefGoogle Scholar
  20. 20.
    P. Baláž, M. Hegedüs, M. Achimovičová, M. Baláž, M. Tešinský, E. Dutková, M. Kaňuchová, J. Briančin, and A.C.S. Sustain, Chem. Eng. 6, 2132 (2018).Google Scholar
  21. 21.
    T.S. Shyju, S. Anandhi, R. Suriakarthick, R. Gopalakrishnan, and P. Kuppusami, J. Solid State Chem. 227, 165 (2015).CrossRefGoogle Scholar
  22. 22.
    D. Pareek, K.R. Balasubramaniam, and P. Sharma, Mater. Charact. 103, 42 (2015).CrossRefGoogle Scholar
  23. 23.
    B. Vidhya, S. Velumani, J.A. Arenas-Alatorre, A. Morales-Acevedo, R. Asomoza, and J.A. Chavez-Carvayar, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 174, 216 (2010).CrossRefGoogle Scholar
  24. 24.
    T. Wada and H. Kinoshita, Thin Solid Films 480–481, 92 (2005).CrossRefGoogle Scholar
  25. 25.
    K. Takei, T. Maeda, and T. Wada, Thin Solid Films 582, 263 (2015).CrossRefGoogle Scholar
  26. 26.
    M.G. Bravo-sa, G.A. Iglesias-silva, A. Estrada-baltazar, and K.R. Hall, J. Chem. Eng. 55, 2310 (2010).Google Scholar
  27. 27.
    F.J.V. Santos, C.A. Nieto De Castro, J.H. Dymond, N.K. Dalaouti, M.J. Assael, and A. Nagashima, J. Phys. Chem. Ref. Data 35, 1 (2006).CrossRefGoogle Scholar
  28. 28.
    S.A. Semenkovich and B.T. Melekh, Chemical Bonds in Solids (Springer, Boston, MA, 1972), pp. 159–162.Google Scholar
  29. 29.
    A. Shongalova, M.R. Correia, B. Vermang, J.M. V. Cunha, P.M.P. Salomé, and P.A. Fernandes, MRS Commun. 8, 865 (2018).Google Scholar
  30. 30.
    Paul Kubelka, J. Opt. Soc. Am. 38, 448 (1948).CrossRefGoogle Scholar
  31. 31.
    Paul Kubelka and Franz Munk, Z. Tech. Phys. 12, 593 (1931).Google Scholar
  32. 32.
    K. Zeng, D.-J. Xue, and J. Tang, Semicond. Sci. Technol. 31, 063001 (2016).CrossRefGoogle Scholar
  33. 33.
    R.E.Ã. Marotti, P. Giorgi, and G. Machado, E. A. Dalchiele 90, 2356 (2006).Google Scholar
  34. 34.
    J.L. Campbell, T.L. Hopman, J.A. Maxwell, and Z. Nejedly, Nucl. Inst. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 170, 193 (2000).CrossRefGoogle Scholar
  35. 35.
    O.S. Hutter, L.J. Phillips, K. Durose, and J.D. Major, Sol. Energy Mater. Sol. Cells 188, 177 (2018).CrossRefGoogle Scholar
  36. 36.
    C. Zhang, Z. Li, Y. Guo, X. Niu, X. Liang, D. Zhou, H. Zhu, J. Chen, and Y. Mai, J. Nanosci. Nanotechnol. 17, 1338 (2017).CrossRefGoogle Scholar
  37. 37.
    G. Golan, A. Axelevitch, B. Gorenstein, and V. Manevych, Microelectron. J. 37, 910 (2006).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Alok Kumar Jain
    • 1
    • 2
  • Abubakar Abdullahi Sifawa
    • 2
  • Saumitra Kamalakar Vajandar
    • 3
  • Min-Qin Ren
    • 3
  • Thomas Osipowicz
    • 3
  • P. Malar
    • 1
    • 2
    Email author
  1. 1.Research InstituteSRM Institute of Science and TechnologyChennaiIndia
  2. 2.Department of Physics and NanotechnologySRM Institute of Science and TechnologyChennaiIndia
  3. 3.Department of Physics, Centre for Ion Beam ApplicationNational University of SingaporeSingaporeSingapore

Personalised recommendations