Electrospun Mn:CeO2/PVP Nanofiber Fabrication: Whole Powder Pattern Modeling of X-ray Diffraction Data, Morphology Study and Optical Properties

  • Leila Riasvand
  • Hossein Mahmoudi ChenariEmail author
  • Saba Khalili


Mn:CeO2/PVP nanofibers were prepared via a simple electrospinning technique with heat treatment at 500°C. X-ray diffraction patterns revealed the formation of a face-centered cubic structure for pure and Mn:CeO2 nanofibers. Whole powder pattern modeling was applied to the x-ray diffraction data for pure and Mn:CeO2 nanofibers to determine the microstructure parameters (the crystalline domain size and the size distribution). The effect of Mn doping on the morphology features of the prepared nanofibers was assessed from the scanning electron microscopy (SEM) image analysis. The SEM images showed random fibers with no distinct alignment, with average fiber diameters of about 80–150 nm after calcination. FT-IR spectra of the Mn0.05Ce0.95O2 nanofibers showed stretching vibrations corresponding to Mn-O and Ce-O bonds. The optical absorption of pure and Mn:CeO2 nanofibers was studied using diffuse reflectance spectroscopy. The optical band gap was found to increase with increased Mn doping, which can be attributed to the quantum confinement effect.


Mn:CeO2/PVP nanofibers WPPM crystallography optical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to acknowledge the financial support from the University of Guilan Research Council.


  1. 1.
    A. Corma, P. Atienzar, H. García, and J.Y. Chane-Ching, Nat. Mater. 3, 394 (2004).CrossRefGoogle Scholar
  2. 2.
    B.C.H. Steele, Solid State Ionics 129, 95 (2000).CrossRefGoogle Scholar
  3. 3.
    S.H. Yu, H. Cölfen, and A. Fischer, Colloid Surf. A 243, 49 (2004).CrossRefGoogle Scholar
  4. 4.
    N.K. Renuka, J. Alloys Compd. 513, 230 (2012).CrossRefGoogle Scholar
  5. 5.
    A. Trovarelli, C. de Leitenburg, M. Boaro, and G. Dolcetti, Catal. Today 50, 367 (1999).CrossRefGoogle Scholar
  6. 6.
    A.S. Mokrushin, E.P. Simonenko, N.P. Simonenko, K.A. Bukunov, V.G. Sevastyanov, and N.T. Kuznetsov, J. Alloy. Compd. 773, 1023 (2019).CrossRefGoogle Scholar
  7. 7.
    S. Yang and L. Gao, J. Am. Chem. Soc. 128, 9330 (2006).CrossRefGoogle Scholar
  8. 8.
    S. Phokha, S. Pinitsoontorn, and S. Maensiri, J. Appl. Phys. 112, 113904 (2012).CrossRefGoogle Scholar
  9. 9.
    H. Xiao, Z. Ai, and L. Zhang, J. Phys. Chem. C 113, 16625 (2009).CrossRefGoogle Scholar
  10. 10.
    C.K. Anushree and C. Sharma, Mater. Chem. Phys. 155, 223 (2015).CrossRefGoogle Scholar
  11. 11.
    Y.Q. Song, H.W. Zhang, and Q.Y. Wen, J. Appl. Phys. 102, 043912 (2007).CrossRefGoogle Scholar
  12. 12.
    H.M. Chenari and H. Kangarlou, Phys. B 499, 38 (2016).CrossRefGoogle Scholar
  13. 13.
    O. Rezaee, H.M. Chenari, F.E. Ghodsi, and H. Ziyadi, J. Alloy. Compd. 690, 864 (2017).CrossRefGoogle Scholar
  14. 14.
    P.A. Kumar, M.D. Tanwar, N. Russo, R. Pirone, and D. Fino, Catal. Today 184, 279 (2012).CrossRefGoogle Scholar
  15. 15.
    W. Qin, L. Xu, J. Song, R. Xing, and H. Song, Sens. Actuators B Chem. 185, 231 (2013).CrossRefGoogle Scholar
  16. 16.
    X.H. Qin and S.Y. Wang, J. Appl. Polym. Sci. 102, 1285 (2006).CrossRefGoogle Scholar
  17. 17.
    B. Maze, H. Vahedi Tafreshi, Q. Wang, and B. Pourdeyhimi, J. Aerosol Sci. 38, 550 (2007).CrossRefGoogle Scholar
  18. 18.
    S.J. Kim, Y.S. Nam, D.M. Rhee, H.S. Park, and W.H. Park, Eur. Polym. J. 43, 3146 (2007).CrossRefGoogle Scholar
  19. 19.
    J. Bai, R. Zhao, G. Han, Z. Li, and G. Diao, RSC Adv. 5, 43328 (2015).CrossRefGoogle Scholar
  20. 20.
    Q. Cui, X. Dong, J. Wang, and M. Li, J. Rare Earth. 26, 664 (2008).CrossRefGoogle Scholar
  21. 21.
    K. Starbova, D. Nihtianova, D. Petrov, N. Starbov, and V. Lovchinov, J. Phys: Conf. Ser. 398, 012051 (2012).Google Scholar
  22. 22.
    A.R. Hwang, J. Park, and Y.C. Kang, B. Korean Chem. Soc. 32, 3338 (2011).CrossRefGoogle Scholar
  23. 23.
    R.N. Bharathi and S. Sankar, J. Supercond. Nov. Magn. 31, 2603 (2017).CrossRefGoogle Scholar
  24. 24.
    P. Scardi and M. Leoni, Acta Crystallogr. A 58, 190 (2002).CrossRefGoogle Scholar
  25. 25.
    P. Scardi and M. Leoni, J. Appl. Crystallogr. 39, 24 (2006).CrossRefGoogle Scholar
  26. 26.
    S. Afzal, X. Quan, and S. Lu, Appl. Catal. B Environ. 248, 526 (2019).CrossRefGoogle Scholar
  27. 27.
    C.E. Kril and R. Birringer, Philos. Mag. A 77, 621 (1998).CrossRefGoogle Scholar
  28. 28.
    F.A. Al-Agel, E. Al-Arfaj, A.A. Al-Ghamdi, Y. Losovyj, L.M. Bronstein, and W.E. Mahmoud, J. Magn. Magn. Mater. 360, 73 (2014).CrossRefGoogle Scholar
  29. 29.
    J.A. Bearden, Rev. Mod. Phys. 39, 78 (1967).CrossRefGoogle Scholar
  30. 30.
    G. Wang, Q. Mu, T. Chen, and Y. Wang, J. Alloy. Compd. 493, 202 (2010).CrossRefGoogle Scholar
  31. 31.
    M. Zare and H.M. Chenari, Appl. Phys. A 124, 657 (2018).CrossRefGoogle Scholar
  32. 32.
    Y. Li, J. Gong, G. He, and Y. Deng, Synth. Metals 161, 56 (2011).CrossRefGoogle Scholar
  33. 33.
    A.K. Zak, A.M. Hashim, and M. Darroudi, Nanoscale Res. Lett. 9, 399 (2014).CrossRefGoogle Scholar
  34. 34.
    S. Tsunekawa, T. Fukuda, and A. Kasuya, J. Appl. Phys. 87, 1318 (2000).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Leila Riasvand
    • 1
  • Hossein Mahmoudi Chenari
    • 1
    Email author
  • Saba Khalili
    • 1
  1. 1.Department of Physics, Faculty of ScienceUniversity of GuilanRashtIran

Personalised recommendations