The Effect of Ni and Bi Additions on the Solderability of Sn-0.7Cu Solder Coatings

  • M. I. I. Ramli
  • M. A. A. Mohd SallehEmail author
  • M. M. A. Abdullah
  • P. Narayanan
  • J. Chaiprapa
  • R. Mohd Said
  • S. Yoriya
  • K. Nogita
TMS2019 Microelectronic Packaging, Interconnect, and Pb-free Solder
Part of the following topical collections:
  1. TMS2019 Advanced Microelectronic Packaging, Emerging Interconnection Technology, and Pb-free Solder


The present investigation explores the influence of Ni and Bi on the solderability of Sn-0.7Cu solder coatings. The minor addition of 0.05 wt.% Ni into the Sn-0.7Cu solder alloy results in an improvement in the wettability based on dipping tests. The solderability investigation using a globule mode shows the influence of Ni and Bi on the interfacial intermetallic compound (IMC). The addition of Ni to a Sn-0.7Cu solder coating resulted in a (Cu,Ni)6Sn5 interfacial IMC, which enhanced the solderability performance during the globule test. With an increasing amount of Bi in the Sn-0.7Cu-0.05Ni-xBi solder ball, the surface energy of the solder alloy can be reduced, and this improves the solderability. The synchrotron micro-XRF results indicate that Ni is found in a relatively high concentration in the interfacial layer. Additionally, Bi was found to be homogenously distributed in the bulk solder, which improved solderability.


Solderability intermetallic compound free solder solder coating soldering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors gratefully acknowledge Nihon Superior (Grant No. 2016/10/0001) and fundamental research grant scheme (FRGS)(FRGS/1/2017/TK05/UNIMAP/02/7) (9003-00635) for the materials and finance support. Wetting balance test were conducted at Nihon Superior (M) Sdn Bhd, Ipoh, Malaysia. The μ-XRF trace element mapping technique was performed at the Synchrotron Light Research Institute (SLRI), Thailand, under Project ID: 3774 and 3774-7.


  1. 1.
    C.C. Tu and M.E. Natishan, Solder. Surf. Mt. Technol. 12, 10–15 (2000).CrossRefGoogle Scholar
  2. 2.
    W. Li, in 2015 16th International Conference on Electronic Packaging Technology (ICEPT), pp. 538–541 (2015).Google Scholar
  3. 3.
    K. Sweatman, Global SMT & Packaging, pp. 10–18 (2009).Google Scholar
  4. 4.
    P. Harant and F. Steiner, in 30th International Spring Seminar on Electronics Technology, pp. 388–392 (2007).Google Scholar
  5. 5.
    M.I.I. Ramli, M.A.A. Mohd Salleh, F.A. Mohd Sobri, P. Narayanan, K. Sweatman, and K. Nogita, J. Mater. Sci. Mater. Electron. 30, 3669–3677 (2019).CrossRefGoogle Scholar
  6. 6.
    H. Wang, F. Wang, F. Gao, X. Mac, and Y. Qian, J. Alloys Compd. 433, 302–305 (2007).CrossRefGoogle Scholar
  7. 7.
    K.N. Prabhu, World Acad. Sci. Eng. Technol. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 7, 25–28 (2013).Google Scholar
  8. 8.
    G. Zeng, S.D. McDonald, G. Qinfen, Y. Terada, K. Uesugi, H. Yasuda, and K. Nogita, Acta Mater. 83, 357–371 (2015).CrossRefGoogle Scholar
  9. 9.
    X. Hu, Y. Lai, X. Jiang, and Y. Li, J. Mater. Sci.: Mater. Electron. 29, 18840–18851 (2018).Google Scholar
  10. 10.
    Y. Wang, G. Wang, K. Song, and K. Zhang, Mater. Des. 119, 219–224 (2017).CrossRefGoogle Scholar
  11. 11.
    L. Zhang, S.B. Xue, G. Zeng, L.L. Gao, and H. Ye, J. Alloys. Compd. 510, 38–45 (2012).CrossRefGoogle Scholar
  12. 12.
    J. Liang, N. Dariavach, P. Callahan, and D. Shangguan, Mater. Trans. 47, 317–325 (2006).CrossRefGoogle Scholar
  13. 13.
    H.Y. Lee, A. Sharma, S.H. Kee, Y.W. Lee, J.T. Moon, and J.P. Jung, Electron. Mater. Lett. 10, 997–1004 (2014).CrossRefGoogle Scholar
  14. 14.
    V.A. Solé, E. Papillon, M. Cotte, P. Walter, and J. Susini, Spectrochim. Acta B 62, 63–68 (2007).CrossRefGoogle Scholar
  15. 15.
    F.A. Mohd Sobri, M.A.A. Mohd Salleh, C.M. Ruzaidi, and P. Narayanan, Appl. Mech. Mater. 754, 493–497 (2015).CrossRefGoogle Scholar
  16. 16.
    M.A.A. Mohd Salleh, S.D. McDonald, and K. Nogita, J. Mater. Process. Technol. 242, 235–245 (2017).CrossRefGoogle Scholar
  17. 17.
    K. Nogita, Intermetallics 18, 145–149 (2010).CrossRefGoogle Scholar
  18. 18.
    K.C. Huang, F.S. Shieu, Y.H. Hsiao, and C.Y. Liu, J. Electron. Mater. 41, 172–175 (2012).CrossRefGoogle Scholar
  19. 19.
    K. Nogita, B. Kefford, J. Read, and S.D. McDonald, Mater. Sci. Forum 857, 53–57 (2016).CrossRefGoogle Scholar
  20. 20.
    M.A.A. Mohd Salleh, S.D. McDonald, H. Yasuda, A. Sugiyama, and K. Nogita, Scr. Mater. 100, 17–20 (2015).CrossRefGoogle Scholar
  21. 21.
    K.-K. Wang, D. Gan, and K.-C. Hsieh, Thin Solid Films 562, 398–404 (2014).CrossRefGoogle Scholar
  22. 22.
    M.J. Rizvi, C. Bailey, Y.C. Chan, and H. Lu, J. Alloys Compd. 438, 116–121 (2007).CrossRefGoogle Scholar
  23. 23.
    B.I. Noh, J.H. Choi, J.W. Yoon, and S.B. Jung, J. Alloys Compd. 499, 154–159 (2010).CrossRefGoogle Scholar
  24. 24.
    A.T. Wu, M.H. Chen, and C.N. Siao, J. Electron. Mater. 38, 252–256 (2009).CrossRefGoogle Scholar
  25. 25.
    P. Yao, P. Liu, and J. Liu, J. Alloys Compd. 462, 73–79 (2008).CrossRefGoogle Scholar
  26. 26.
    F. Gao, K. Rajathurai, Q. Cui, G. Zhou, I. NkengforAcha, and G. Zhiyong, Appl. Surf. Sci. 258, 7507–7514 (2012).CrossRefGoogle Scholar
  27. 27.
    A.H. Nobari, M. Maalekian, K. Seelig, and M. Pekguleryuz, J. Electron. Mater. 46, 4076–4084 (2017).Google Scholar
  28. 28.
    Z.Q. Li, S.A. Belyakov, J.W. Xian, and C.M. Gourlay, J. Electron. Mater. 47, 84–95 (2017).Google Scholar
  29. 29.
    T.-T. Luu and A. Duan, Knut E Aasmundtveit and Nils Hoivik. J. Electron. Mater. 42, 3582–3592 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Center of Excellence Geopolymer and Green Technology (CeGeoGTech), School of Materials EngineeringUniversiti Malaysia Perlis (UniMAP)Jejawi, ArauMalaysia
  2. 2.Nihon Superior (M) Sdn BhdIpohMalaysia
  3. 3.Synchrotron Light Research InstituteMuang DistrictThailand
  4. 4.National Metal and Materials Technology CenterNational Science and Technology Development AgencyKhlong LuangThailand
  5. 5.Nihon Superior Centre for the Manufacture of Electronic Materials (NS CMEM), School of Mechanical and Mining EngineeringThe University of QueenslandBrisbaneAustralia

Personalised recommendations