Effect of B2O3 Concentration and Sintering Temperature on Microstructure and Electrical Properties in the ZnO-Bi2O3-Based Varistors

  • Xin-Yuan Wu
  • Jin-Ran Liu
  • Yong Chen
  • Mao-Hua WangEmail author


The ZnO-Bi2O3-MnO2-Co2O3-based (ZBMCO) varistors were prepared via the sol–gel method. The effects of B2O3 additive on the phase composition, microstructure, sintering temperature and electrical properties of the ZBMCO ceramics were studied. A single hexagonal ZnO phase was detected in all ZBMCO-xB2O3 varistors sintered at high temperature (1100°C). Secondary phases Mn0.31Bi1.69O2.85, Zn3B2O6, Bi24B2O39 and Bi2O3 were detected in ZBMCO-1.0 wt.%B2O3 varistors at a lower sintering temperature (900°C, 1000°C). The average grain size increased remarkably in the range of 15.27–26.12 μm with an increase of the B2O3 content. The ZBMCO-1.0 wt.%B2O3 varistor showed the maximum relative density of 97.2% with high nonlinear coefficient (56.5) and low leakage current (0.07 μA/cm2) at 1100°C. The E1mA decreased noticeably from 865 V/mm to 64 V/mm with an increase of the sintering temperature. When the sintering temperature is lower at 1000°C, the varistor exhibits relatively good electrical properties (α = 48.7, IL = 0.68 μA/cm2). These results demonstrate that low melting point B2O3 plays multiple roles in grain growth and microstructure.


Sol–gel route ceramics varistors sintering electrical performance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    D.R. Clarke, J. Am. Ceram. Soc. 82, 485 (1999).CrossRefGoogle Scholar
  2. 2.
    T.K. Gupta, J. Am. Ceram. Soc. 73, 1817 (1990).CrossRefGoogle Scholar
  3. 3.
    M. Matsuoka, Jpn. J. Appl. Phys. 10, 736 (1971).CrossRefGoogle Scholar
  4. 4.
    Y.S. Lee and T.Y. Tseng, J. Am. Ceram. Soc. 75, 1636 (1992).CrossRefGoogle Scholar
  5. 5.
    L. Cheng, L. Zheng, G. Li, K. Yuan, Y. Gu, and F. Zhang, J. Am. Ceram. Soc. 93, 44 (2010).CrossRefGoogle Scholar
  6. 6.
    A.B. Glot and S.V. Mazurik, Inorg. Mater. 36, 63 (2000).CrossRefGoogle Scholar
  7. 7.
    J.L. Huang and K.B. Li, J. Mater. Res. 9, 1526 (1994).CrossRefGoogle Scholar
  8. 8.
    S.L. Jiang, T.T. Xie, H.B. Zhang, T. Guo, and Y.Q. Huang, J. Electroceram. 21, 528 (2008).CrossRefGoogle Scholar
  9. 9.
    E. Gomez, J. Echeberria, I. Iturriza, and F. Castro, J. Eur. Ceram. Soc. 24, 2895 (2004).CrossRefGoogle Scholar
  10. 10.
    C.W. Nahm, Solid State Commun. 132, 213 (2004).CrossRefGoogle Scholar
  11. 11.
    J.S. Park, Y.H. Han, and K.H. Choi, J. Mater. Sci. Mater. Mater. Electron. 16, 215 (2000).CrossRefGoogle Scholar
  12. 12.
    S. Bernik and N. Daneu, J. Eur. Ceram. Soc. 27, 3161 (2007).CrossRefGoogle Scholar
  13. 13.
    Z. Brankovic, G. Brankovic, S. Bernik, and M. Zunic, J. Eur. Ceram. Soc. 27, 1101 (2007).CrossRefGoogle Scholar
  14. 14.
    C. Leach, Z. Ling, and R. Freer, J. Eur. Ceram. Soc. 20, 2759 (2000).CrossRefGoogle Scholar
  15. 15.
    M. Peiteado, J.F. Fernandez, and A.C. Caballero, J. Eur. Ceram. Soc. 27, 3867 (2007).CrossRefGoogle Scholar
  16. 16.
    S. Bernik, G. Brankovic, S. Rustja, and M. Zunic, Ceram. Int. 34, 1495 (2008).CrossRefGoogle Scholar
  17. 17.
    S. Ma, Z. Xu, R. Chu, J. Hao, L. Cheng, and G. Li, J. Mater. Sci. Mater. Electron. 25, 3878 (2014).CrossRefGoogle Scholar
  18. 18.
    T.K. Gupta and W.G. Carlson, J. Mater. Sci. 20, 3487 (1985).CrossRefGoogle Scholar
  19. 19.
    X.K. Xiao and G.R. Li, Ceram. Int. 41, 557 (2015).CrossRefGoogle Scholar
  20. 20.
    C.W. Nahm, J. Eur. Ceram. Soc. 23, 1345 (2003).CrossRefGoogle Scholar
  21. 21.
    T. Takemura, M. Kobayashi, and Y. Takada, J. Am. Ceram. Soc. 69, 430 (1986).CrossRefGoogle Scholar
  22. 22.
    S.J. So and C.B. Park, J. Korean Phys. Soc. 40, 925 (2002).Google Scholar
  23. 23.
    F. Greuter, G. Blatter, and M. Rossinelli, 2nd International Varistor Conference Schenectady, NY, 5–6th December (1988), pp. 31–53.Google Scholar
  24. 24.
    P.R. Bueno, E.R. Leite, and M.M. Oliveira, Appl. Phys. Lett. 79, 48 (2001).CrossRefGoogle Scholar
  25. 25.
    H.R. Bai, J. Eur. Ceram. Soc. 37, 3965 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Xin-Yuan Wu
    • 1
  • Jin-Ran Liu
    • 1
  • Yong Chen
    • 1
    • 2
  • Mao-Hua Wang
    • 1
    • 2
    Email author
  1. 1.School of Petrochemical EngineeringChangzhou UniversityChangzhouPeople’s Republic of China
  2. 2.Huaide CollegeChangzhou UniversityChangzhouPeople’s Republic of China

Personalised recommendations