Physical and Chemical Properties of Dimedone “Base Schiff” for Organic Semiconductor Applications

  • Chahrazed BenhaouaEmail author
  • Abdelkader Ammari
  • Salah Bassaid
  • Abdelkader Belfedal
  • Abdelkader Dehbi


One pot synthesis of “Schiff” base is carried out in this study. The synthesis by using microwave reaction as a modern method is realized from 4-dimehtylamino-5,5-dimethyl-1,3-cyclohexanedione, benzene 1.4-diamine and 1,3-benzodioxole-5-carbaldéhyde. The structural properties of the resulting compound were determined by NMR (1H and 13C), low-resolution mass spectrometry (ESI–MS), FTIR spectroscopy and x-ray diffraction. The product is semicrystalline material with a monoclinic unit cell. Based on the optical spectra, the compound has an optical band gap of (Eg = 2.89 eV). In addition, the dielectric spectroscopy was applied for studying the ac-electrical conductivity, dielectric constant and dielectric losses of the synthesized “Schiff” base. The results obtained from this study show that it has a promising future in the field of organic optoelectronics and their potential applications especially in photovoltaic conversion energies.


Azomethine dimedone microwave semicrystalline optical band gap Ac-conductivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors thank Prof. E. Belarbi from the Laboratory of Synthesis and Catalysis, Ibn-Khal-doun University (Tiaret, Algeria), for the XRD and the electrical measurements. The authors also thank Prof. M. Salle´ from the Laboratory of MoltecH-Anjou (Angers, France), for the help in the mass spectroscopy measurement. The author C. Benhaoua, would like to think personally Prof. A. Kadari, and Prof K. Djakhdene from the Ibn-Khaldoun University (Tiaret, Algeria), for many helpful discussions during the progress of this work.


  1. 1.
    D.M. Chapin, C.S. Fuller, and G.L. Pearson, J. Appl. Phys. 25, 676 (1954).CrossRefGoogle Scholar
  2. 2.
    T.A. Skotheim, R.L. Elsenbaumer, and J.R. Reynolds, Handbook of Conducting Polymers (New York: Marcel Dekker, 1998).Google Scholar
  3. 3.
    M. Ishinara, T. Noda, H. Kogeyama, H. Nakano, and Y. Shirota, Synth. Met. 20, 795–796 (2001).CrossRefGoogle Scholar
  4. 4.
    S. Vijayalakshmi and S. Kalyanaraman, Opt. Mater. 35, 440–443 (2013).CrossRefGoogle Scholar
  5. 5.
    Q.H. Wu, Y. Liao, G.Z. Wang, R.C. Fang, H.Y. Lee, and C.T. Lee, Appl. Phys. Lett. 83, 4713 (2003).CrossRefGoogle Scholar
  6. 6.
    N.P. Prasad and D.J. Williams, Introduction to Nonlinear Optical Effects in Organic Molecules and Polymers (New York: Wiley, 1991).Google Scholar
  7. 7.
    R.W. Munn and C.N. Ironside, Principles and Applications of Nonlinear Optical Materials (London: Blackie Academic & Professional, 1993).CrossRefGoogle Scholar
  8. 8.
    J.P. Farges, Organic Conductors (New York: Marcel Dekker, 1994).Google Scholar
  9. 9.
    M. Pope and C.E. Swenberg, Electronic Processes in Organic Crystals (Oxford: Clarendon Press, 1982).Google Scholar
  10. 10.
    A. Trujillo, M. Fuentealba, D. Carrillo, C. Manzur, I. Ledoux-Rak, J.-R. Hmon, and J.-Y. Saillard, Inorg. Chem. 49, 2750 (2010).CrossRefGoogle Scholar
  11. 11.
    J.M. Rivera, D. Guzman, M. Rodriguez, J.-F. Lamere, K. Nakatani, R. Santillan, P.G. Lacroix, and N. Farfan, J. Organomet. Chem. 691, 1722 (2006).CrossRefGoogle Scholar
  12. 12.
    P.G. Lacroix, Eur. J. Inorg. Chem. 2001, 339–348 (2001).CrossRefGoogle Scholar
  13. 13.
    P.G. Lacroix, S.D. Bella, and I. Ledoux, Chem. Mater. 8, 541–545 (1996).CrossRefGoogle Scholar
  14. 14.
    C. Benhaoua, M. Rahmouni, and H. Benhaoua, Mediterr. J. Chem. 8, 42–52 (2019).CrossRefGoogle Scholar
  15. 15.
    C. Benhaoua, S. Kasmi, M. Rahmouni, and J.P. Bazureau, J. Mar. Chim. Heterocycl. 17, 50–60 (2018).Google Scholar
  16. 16.
    D. Sęk, M. Lapkowski, H. Dudek, K. Karoń, H. Janeczek, and B. Jarząbek, Synth. Met. 162, 1046–1051 (2012).CrossRefGoogle Scholar
  17. 17.
    M.L. Petrus, R.K.M. Bouwer, U. Lafont, S. Athanasopoulos, N.C. Greenham, and T.J. Dingemans, J. Mater. Chem. A 2, 9474 (2014).CrossRefGoogle Scholar
  18. 18.
    A. Iwan, E. Schab-Balcerzak, M. Grucela-Zajac, and L. Skorka, J. Mol. Struct. 1058, 130–135 (2014).CrossRefGoogle Scholar
  19. 19.
    D. Sek, M. Grucela-Zajac, M. Krompiec, H. Janeczek, and E. Schab-Balcerzak, Opt. Mater. 34, 1333 (2012).CrossRefGoogle Scholar
  20. 20.
    A.W. Jeevadason, K.K. Murugavel, and M.A. Neelakantan, Renew. Sust. Energ. Rev. 36, 220 (2014).CrossRefGoogle Scholar
  21. 21.
    A. Ammari, M. Trari, B. Bellal, and N. Zebbar, J. Electroanal. Chem. 823, 638–646 (2018).CrossRefGoogle Scholar
  22. 22.
    A. Ammari, B. Bellal, N. Zebbar, B. Benrabah, and M. Trari, Thin Solid Films 632, 66–72 (2017).CrossRefGoogle Scholar
  23. 23.
    D. Redfield, Phys. Rev. Lett. 30, 1319 (1973).CrossRefGoogle Scholar
  24. 24.
    D. Redfield, Appl. Phys. Lett. 33, 531–533 (1978).CrossRefGoogle Scholar
  25. 25.
    F. Yakuphanoglu, A.O. Gorgulu, and A. Cukurovali, Phys. B 353, 223–229 (2004).CrossRefGoogle Scholar
  26. 26.
    D. Naegele and D.Y. Yoon, Appl. Phys. Lett. 33, 132–134 (1978).CrossRefGoogle Scholar
  27. 27.
    L.A. Knauss, J.M. Pond, J.S. Horwitz, D.B. Chrisey, C.H. Mueller, and R. Treece, Appl. Phys. Lett. 69, 25–27 (1996).CrossRefGoogle Scholar
  28. 28.
    D.F. Swinehart, J. Chem. Educ. 39, 333 (1962).CrossRefGoogle Scholar
  29. 29.
    D. Sek, M. Grucela-Zajac, M. Krompiec, H. Janeczek, and E. Schab-Balcerzak, Spectrochim. Acta A Mol. Biomol. Spectrosc. 175, 24–35 (2017).CrossRefGoogle Scholar
  30. 30.
    M.H. Brodsky, M. Cardona, and J. Cuomo, Phys. Rev. 16, 3556–3571 (1977).CrossRefGoogle Scholar
  31. 31.
    J. Tauc and A. Menth, J. Non. Cryst. Solids 8–10, 569 (1972).CrossRefGoogle Scholar
  32. 32.
    P.I. Djurovich, E.I. Mayo, S.R. Forrest, and M.E. Thompson, Org. Electron. 10, 515–520 (2009).CrossRefGoogle Scholar
  33. 33.
    S.H. Wemple and M. Didomenico, Phys. Rev. B 3, 1338 (1971).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Laboratory of Physical EngineeringIbn-Khaldoun UniversityTiaretAlgeria
  2. 2.Department of Physics, Faculty of Matter SciencesIbn-Khaldoun UniversityTiaretAlgeria
  3. 3.Laboratory of Physical Chemistry of Macromolecules and Biological Interfaces, Department of BiologyUniversity of MascaraMascaraAlgeria
  4. 4.Laboratory of Micro and NanophysicsNational Polytechnic School of Oran (ENPO)OranAlgeria

Personalised recommendations