Field Stress Influenced Conduction Behavior of Narrow Diameter Gate-All-Around (GAA) Silicon Nanowire n-MOSFET

  • Deepak K. SharmaEmail author
  • Ranjith Kumar Goud
  • Arnab DattaEmail author
  • Sanjeev Manhas


Narrow diameter, n-channel gate-all-around (GAA) silicon nanowire metal–oxide–semiconductor-field-effect-transistor (GAA-SNWFET) shows partial surface conduction under constant field stress, which was validated from the low frequency noise measurements. The said conduction mode is different than the complete bulk mode of conduction as found in pre-stressed devices, and had been assessed from the normalized drain current power spectral density (PSD) versus frequency (f) and gate voltage overdrive [(VG − VT)] characteristics. In all instances followed by constant field stressing for different times, Lorentzian PSD was found, the low frequency component of which furthermore shows a direct deviation from its dependence on (VG − VT)−1, in contrary to the pre-stressed device. We explained the rationale of Lorentzian PSD from fresh trap creation inside the gate oxide of silicon nanowire under the influence of stress. Further, observed correlated variation between the normalized PSD versus time averaged drain current (<ID>) and, normalized transconductance versus <ID> supports trap influenced transport in the stressed device. Transient drain current with its statistical distribution of current levels for different VG − VT furthermore shows trap assisted partial surface conduction in stressed nanowire.


Silicon nanowire field effect transistor low frequency noise drain current transient field stress 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors sincerely thank Dr. Navab Singh, Institute of Microelectronics (IME), Singapore, for the GAA-SNWFET fabrication support. The work has been funded through the Grant No. SR/FTP/ETA-0124/2013, SERB-DST, India.


  1. 1.
    International Technology Roadmap for Semiconductors (ITRS) (2015)Google Scholar
  2. 2.
    N. Singh, F.Y. Lim, W.W Fang, S.C Rustagi, L.K. Bera, A. Agrawal, C.H. Tung, K.M. Hoe, S.R. Omampuliyur, D. Tripathi, A.O. Adeyeye, G.Q. Lo, N. Balasubramaniun, D.L. Kwong et al., IEDM Tech. Dig. (2006), pp. 1–4Google Scholar
  3. 3.
    P. Zheng, D. Connelly, F. Ding, and T.J.K. Liu, IEEE Trans. Electron Devices 62, 3945 (2015).CrossRefGoogle Scholar
  4. 4.
    S. Bangsaruntip, K. Balakrishnan, S.L. Cheng, J. Chang, M. Brink, I. Lauer, R. L. Bruce, S. U. Engelmann, A. Pyzyna, G. M. Cohen, L. M. Gignac, C. M. Breslin, J. S. Newbury, D. P. Klaus, A. Majumdar, J. W. Sleight, and M. A. Guillorn, IEDM Tech. Dig. (2013), pp. 526–529Google Scholar
  5. 5.
    F.L. Yang, H.Y. Chen, F.C. Chen, C.C. Huang, C.Y. Chang, H.K. Chiu, C.C. Lee, C.C. Chen, H.T. Huang, C.J. Chen, H.J. Tao, Y.C. Yeo, M.S. Liang, and C. Hu, IEDM Tech. Dig. (2002), pp. 255-258Google Scholar
  6. 6.
    B. Yu, L. Wang, Y. Yuan, P.M. Asbeck, and Y. Taur, IEEE Trans. Electron Devices 55, 2846 (2008).CrossRefGoogle Scholar
  7. 7.
    W. Feng, R. Hettiarachchi, Y.Lee, S. Sato, K. Kakushima, M. Sato, K. Fukuda, M. Niwa, K. Yamabe, K.Shiraishi, H. Iwai, and K. Ohmori, IEDM Tech. Dig (2011), pp. 630–633Google Scholar
  8. 8.
    P. Singh, N. Singh, J. Miao, W.T. Park, and D.L. Kwong, IEEE Electron Device Lett. 32, 1752 (2011).CrossRefGoogle Scholar
  9. 9.
    K. Ohmori, W. Feng, R. Hettiarachchi, Y. Lee, S. Sato, K. Kakushima, M. Sato, K. Fukunda, M. Niwa, K. Yamabe, K. Shiraishi, H. Iwai, and K. Yamada, in IEEE 11th International Conference on Solid-State and Integrated Circuit Technology, (2012), pp. 1-4Google Scholar
  10. 10.
    A. Ajaykumar, X. Zhou, S.B. Chiah, and B. Syamal, IEEE Trans. Electron Devices 64, 1702 (2017).CrossRefGoogle Scholar
  11. 11.
    H. Wong, Microelectron. Reliab. 43, 585 (2003).CrossRefGoogle Scholar
  12. 12.
    S.H. Lee, C.K. Baek, S. Park, D.W. Kim, D.K. Sohn, J.S. Lee, D.M. Kim, and Y.H. Jeong, IEEE Electron Device Lett. 33, 1348 (2012).CrossRefGoogle Scholar
  13. 13.
    K.M. Persson, B.G. Malm, and L.E. Wernersson, Appl. Phys. Lett. 103, 033508 (2013).CrossRefGoogle Scholar
  14. 14.
    F. Lezzi, G. Ferrari, C. Pennetta, and D. Pisignano, Nano Lett. 15, 7245 (2015).CrossRefGoogle Scholar
  15. 15.
    S.L. Rumyantsev, M.S. Shur, M.E. Levinshtein, A. Motayed, and A.V. Davydov, J. Appl. Phys. 103, 064501 (2008).CrossRefGoogle Scholar
  16. 16.
    C. Wei, Y.Z. Xiong, X. Zhou, N. Singh, S.C. Rustagi, G.Q. Lo, and D.L. Kwong, IEEE Electron Device Lett. 30, 668 (2009).CrossRefGoogle Scholar
  17. 17.
    S. Ju, P. Chen, C. Zhou, Y. Ha, A. Facchetti, T.J. Marks, S.K. Kim, S. Mohammadi, and D.B. Janes, Appl. Phys. Lett. 92, 243120 (2008).CrossRefGoogle Scholar
  18. 18.
    W. Feng, R. Hettiarachchi, S. Sato, K. Kakushima, M. Niwa, H. Iwai, K. Yamada, and K. Ohmori, Jpn. J. Appl. Phys. 51, 1 (2012).CrossRefGoogle Scholar
  19. 19.
    N. Clément, X.L. Han, and G. Larrieu, Appl. Phys. Lett. 103, 263504 (2013).CrossRefGoogle Scholar
  20. 20.
    P. Agnihotri, and S. Bandyopadhyay, IEEE Trans. Electron Device 57, 3101 (2010).CrossRefGoogle Scholar
  21. 21.
    F. Crupi, G. Giusi, G. Iannaccone, P. Magnone, C. Pace, E. Simoen, and C. Claeys, J. Appl. Phys. 106, 073710 (2009).CrossRefGoogle Scholar
  22. 22.
    J.W. Lee, W.S. Yun, and G. Ghibaudo, J. Appl. Phys. 115, 194501 (2014).CrossRefGoogle Scholar
  23. 23.
    R. Jayaraman and C.G. Sodini, IEEE Trans. Electron Devices 36, 1773 (1989).CrossRefGoogle Scholar
  24. 24.
    Z. Shi, J.P. Mieville, and M. Dutoit, IEEE Trans. Electron Devices 41, 1161 (1994).CrossRefGoogle Scholar
  25. 25.
    Synopsys TCAD, SDEVICE Manual, Synopsis Inc. (2016)Google Scholar
  26. 26.

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringIndian Institute of Technology (IIT)RoorkeeIndia

Personalised recommendations