Advertisement

Degradation of Methyl Red under Visible Light Using N,F-TiO2/SiO2/rGO Nanocomposite

  • Susan SamadiEmail author
  • Elahe Khalili
  • Mohammad Reza Allahgholi Ghasri
Article

Abstract

N,F-TiO2 and SiO2 nanoparticles have been synthesized by a sol–gel method and grown on reduced graphene oxide by a solvothermal method at different molar ratios. The microstructure and morphology of the N,F-TiO2/SiO2/rGO nanocomposite were investigated by Fourier-transform infrared spectroscopy, x-ray diffraction analysis, field-emission scanning electron microscopy, transmission electron microscopy, energy-dispersive x-ray spectroscopy, and Brunauer–Emmett–Teller surface area (SBET) measurements. The synthesized nanocomposite was used for photocatalytic degradation of Methyl Red (MR) dye. Ultraviolet–visible (UV–Vis) spectrophotometry was used to determine the degree of dye degradation before and after contact with the nanocomposite, and the absorbance was measured at 518 nm. The results confirmed that the N,F-TiO2/SiO2/rGO nanocomposite degraded 95% of MR after 60 min under visible-light irradiation. Factors affecting its photocatalytic ability were investigated and optimized. The results showed that the highest degradation efficiency was observed when 1.5 mL silica sol was used to synthesize the nanocomposite. Finally, the mechanism of Methyl Red degradation was investigated.

Keywords

Textile dye photocatalytic activity titania decolorization rGO 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgment

The authors are highly grateful to the Laboratory Complex of Science and Research Branch, I.A.U. for valuable methodological support.

References

  1. 1.
    S. Benkhaya, S. El Harfi, and A. El Harfi, Appl. J. Environ. Eng. Sci. 3, 311 (2017).Google Scholar
  2. 2.
    S. Arivoli and M. Hema, Int. J. Phys. Sci. 2, 10 (2007).Google Scholar
  3. 3.
    M.A. Mohammed, A. Shitu, and A. Ibrahim, Res. J. Chem. Sci. 4, 91 (2014).Google Scholar
  4. 4.
    C. Zhang, Z. Zhu, H. Zhang, and Z. Hu, J. Environ. Sci. 24, 1021 (2012).CrossRefGoogle Scholar
  5. 5.
    Y. Wang, B. Gao, Q. Yue, and Y. Wang, J. Environ. Sci. 23, 1626 (2011).CrossRefGoogle Scholar
  6. 6.
    A. Ayati, M. Niknam Shahrak, B. Tanhaei, and M. Sillanpää, Chemosphere 160, 30 (2016).CrossRefGoogle Scholar
  7. 7.
    C. Sahoo, A.K. Gupta, and A. Pal, Desalination 181, 91 (2005).CrossRefGoogle Scholar
  8. 8.
    M. Ghaedi, A. Najibi, H. Hossainian, A. Shokrollahi, and M. Soylak, Toxicol. Environ. Chem. 94, 40 (2012).CrossRefGoogle Scholar
  9. 9.
    Y. Badr, M. Abd El-Wahed, and M. Mahmoud, J. Hazard. Mater. 154, 245 (2008).CrossRefGoogle Scholar
  10. 10.
    H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard, and J.M. Herrmann, Appl. Catal. B 39, 75 (2002).CrossRefGoogle Scholar
  11. 11.
    D. Sponza and M. Işik, Enzyme Microb. Technol. 31, 102 (2002).CrossRefGoogle Scholar
  12. 12.
    P.V. Nidheesh, M. Zhou, and M.A. Oturan, Chemosphere 197, 210 (2018).CrossRefGoogle Scholar
  13. 13.
    D. Georgiou, A. Aivazidis, J. Hatiras, and K. Gimouhopoulos, Water Res. 37, 2248 (2003).CrossRefGoogle Scholar
  14. 14.
    S. Natarajan, H.C. Bajaj, and R.J. Tayade, J. Environ. Sci. 65, 201 (2018).CrossRefGoogle Scholar
  15. 15.
    G. McMullan, C. Meehan, A. Conneely, N. Kirby, T. Robinson, P. Nigam, I.M. Banat, R. Merchant, and W.F. Smyth, Appl. Microbiol. Biotechnol. 56, 81 (2001).CrossRefGoogle Scholar
  16. 16.
    W. Lu, T. Xu, Y. Wang, H. Hu, N. Li, X. Jiang, and W. Chen, Appl. Catal. B-Environ. 180, 20 (2016).CrossRefGoogle Scholar
  17. 17.
    M. Eghbali-Arani, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, F. Ahmadi, and S. Pourmasoud, Ultrason. Sonochem. 43, 120 (2018).CrossRefGoogle Scholar
  18. 18.
    J. Madhavan, P. Maruthamuthu, S. Murugesan, and S. Anandan, Appl. Catal. B-Environ. 83, 8 (2008).CrossRefGoogle Scholar
  19. 19.
    S.P. Albu, A. Ghicov, S. Aldabergenova, P. Drechsel, D. LeClere, G.E. Thompson, J.M. Macak, and P. Schmuki, Adv. Mater. 20, 4135 (2008).Google Scholar
  20. 20.
    Y.H. Yu, Y.P. Chen, and Z. Cheng, Int. J. Hydrog. Energy 40, 15994 (2015).CrossRefGoogle Scholar
  21. 21.
    X. Hao, Z. Jin, J. Xu, S. Min, and G. Lu, Superlattice Microstruct. 94, 237 (2016).CrossRefGoogle Scholar
  22. 22.
    J. Zhang, Y. Kusumawati, and T. Pauporté, Electrochim. Acta 201, 125 (2016).CrossRefGoogle Scholar
  23. 23.
    J. Du, X. Lai, N. Yang, J. Zhai, D. Kisailus, F. Su, D. Wang, and L. Jiang, ACS Nano 5, 590 (2010).CrossRefGoogle Scholar
  24. 24.
    F. Liu, X. Yan, X. Chen, L. Tian, Q. Xia, and X. Chen, Catal. Today 264, 243 (2016).CrossRefGoogle Scholar
  25. 25.
    T. Xu, L. Zhang, H. Cheng, and Y. Zhu, Appl. Catal. B 101, 382 (2011).CrossRefGoogle Scholar
  26. 26.
    W. Fan, Q. Lai, Q. Zhang, and Y. Wang, J. Phys. Chem. C 115, 10694 (2011).CrossRefGoogle Scholar
  27. 27.
    K. Osako, K. Matsuzaki, T. Susaki, S. Ueda, G. Yin, A. Yamaguchi, H. Hosono, and M. Miyauchi, Chem. Catal. Chem. 10, 3666 (2018).Google Scholar
  28. 28.
    K.C. Nguyen, M.P. Ngoc, and M.V. Nguyen, Mater. Lett. 165, 247 (2016).CrossRefGoogle Scholar
  29. 29.
    J. Yu, T. Ma, G. Liu, and B. Cheng, Dalton Trans. 40, 6635 (2011).CrossRefGoogle Scholar
  30. 30.
    F. Wang and K. Zhang, Curr. Appl. Phys. 12, 346 (2012).CrossRefGoogle Scholar
  31. 31.
    D. Li, M.B. Müller, S. Gilje, R.B. Kaner, and G.G. Wallace, Nat. Nanotechnol. 3, 101 (2008).CrossRefGoogle Scholar
  32. 32.
    I.V. Lightcap, T.H. Kosel, and P.V. Kamat, Nano Lett. 10, 577 (2010).CrossRefGoogle Scholar
  33. 33.
    G. Williams, B. Seger, and P.V. Kamat, ACS Nano 2, 1487 (2008).CrossRefGoogle Scholar
  34. 34.
    B. Tang and G. Hu, Chem. Vap. Depos. 20, 14 (2014).CrossRefGoogle Scholar
  35. 35.
    T. Bo, W. Zhengwei, W. Huang, L. Sen, M. Tingting, Y. Haogang, and L. Xufei, Nanoscale Res. Lett. 12, 527 (2017).CrossRefGoogle Scholar
  36. 36.
    H.M. Yadav and J.S. Kim, J. Alloys Compd. 688, 123 (2016).CrossRefGoogle Scholar
  37. 37.
    Q. Xiang, J. Yu, and M. Jaroniec, Chem. Soc. Rev. 41, 782 (2012).CrossRefGoogle Scholar
  38. 38.
    Q. Xiang, J. Yu, and M. Jaroniec, J. Am. Chem. Soc. 134, 6575 (2012).CrossRefGoogle Scholar
  39. 39.
    A. Nikokavoura and C. Trapalis, Appl. Surf. Sci. 430, 18 (2018).CrossRefGoogle Scholar
  40. 40.
    X. Li, R. Shen, S. Ma, X. Chen, and J. Xie, Appl. Surf. Sci. 430, 53 (2018).CrossRefGoogle Scholar
  41. 41.
    J. Cha, M. Cui, M. Jang, S.H. Cho, D.H. Moon, and J. Khim, Environ. Geochem. Health 33, 81 (2011).CrossRefGoogle Scholar
  42. 42.
    L. Staudenmaier, Ber. Dtsch. Chem. Ges. 31, 1481 (1898).CrossRefGoogle Scholar
  43. 43.
    H. Ijadpanah-Saravi, M. Zolfaghari, A. Khodadadi, and P. Drogui, Desalin. Water Treat. 57, 14647 (2016).CrossRefGoogle Scholar
  44. 44.
    A. Jonidi Jafari, R. Rezaei Kalantary, A. Esrafili, and H. Arfaeinia, Process. Saf. Environ. 116, 377 (2018).CrossRefGoogle Scholar
  45. 45.
    M. Riazian, J. Nanostruct. 4, 433 (2014).Google Scholar
  46. 46.
    J. Gao, W. Li, X. Zhao, L. Wang, and N. Pan, Text. Res. J. 89, 517 (2019).CrossRefGoogle Scholar
  47. 47.
    S. Brunauer, P.H. Emmett, and E. Teller, J. Am. Chem. Soc. 60, 309 (1938).CrossRefGoogle Scholar
  48. 48.
    C. Sahoo, A.K. Gupta, and A. Pal, Desalination 181, 91 (2005).CrossRefGoogle Scholar
  49. 49.
    P.P. Hankare, R.P. Patil, A.V. Jadhav, K.M. Garadkar, and R. Sasikala, Appl. Catal. B-Environ. 107, 333 (2011).CrossRefGoogle Scholar
  50. 50.
    T. Welderfael, O.P. Yadav, A.M. Taddesse, and J. Kaushal, Bull. Chem. Soc. Ethiopia 27, 221 (2013).Google Scholar
  51. 51.
    Y.M. Hunge, V.S. Mohite, S.S. Kumbhar, K.Y. Rajpure, A.V. Moholkar, and C.H. Bhosale, J. Mater. Sci.: Mater. Electron. 26, 8404 (2015).Google Scholar
  52. 52.
    B.M. Vinoda, M. Vinuth, Y.D. Bodke, and J. Manjanna, J. Environ. Anal. Toxicol. 5, 2161 (2015).Google Scholar
  53. 53.
    A.D. Vishwanath, S.S. Jadhav, N.M. Eknath, A.E. Athare, and N.H. Kolhe, Orient. J. Chem. 33, 104 (2017).CrossRefGoogle Scholar
  54. 54.
    Y. Wan, J. Chen, J. Zhan, and Y. Ma, J. Environ. Chem. Eng. 6, 6079 (2018).CrossRefGoogle Scholar
  55. 55.
    O.L. Omotunde, A.E. Okoronkwo, A.F. Aiyesanmi, and E. Gurgur, J. Photochem. Photobiol. A 365, 145 (2018).CrossRefGoogle Scholar
  56. 56.
    S.M. Patil, S.P. Deshmukh, K.V. More, V.B. Shevale, S.B. Mullani, A.G. Dhodamani, and S.D. Delekar, Mater. Chem. Phys. 225, 247 (2019).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Susan Samadi
    • 1
    Email author
  • Elahe Khalili
    • 2
  • Mohammad Reza Allahgholi Ghasri
    • 1
  1. 1.Department of Chemistry, College of Science, Yadegar-e-Imam Khomeini (RAH) Shahr-e-Rey BranchIslamic Azad UniversityTehranIran
  2. 2.Department of Chemistry, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations