Advertisement

Frequency and Temperature Dependent Dielectric and Magnetic Properties of Manganese Doped Cobalt Ferrite Nanoparticles

  • M. Z. AhsanEmail author
  • F. A. Khan
  • M. A. Islam
Article
  • 3 Downloads

Abstract

This paper reports a series of investigations on the frequency and temperature dependent dielectric and magnetic properties of manganese doped cobalt ferrite nanoparticles. The investigated samples were prepared via solid state reaction using planetary ball milling. The nature in the variation of the relative dielectric constant of the investigated sample with Mn content (x) = 0.375 and 0.5 as a function of frequency demonstrates the normal behavior for the selected temperature at 77 K and 300 K. However, the relaxation single peaks are noted at 100 kHz for selected temperatures of 148 K, 165 K, and 236 K, which mark the ferrimagnetic-to-ferromagnetic phase transition. This transition may have originated from the dominance of anisotropy energy at a lower temperature. The values of relative dielectric constant for the samples are found to be higher than that at room temperature, which shows the relative dielectric constant to be strongly dependent on temperature. Their D-factor values are observed to be much lower in the low temperature region (below room temperature) and exhibit normal variation with an increase of frequency. The higher values of relative dielectric constant may make the samples suitable to be used in spaceborne applications. The enhanced saturation magnetization is observed due to calcination at elevated temperature (900°C). The effect of Mn content (x) is found to lessen the saturation magnetization due to the substitution of Fe3+ cation in the B site according to Neel’s two-sublattice model. The decreasing nature in the real part of permeability matches the spin-glass of the materials of the investigated system due to the tendency of their frozen spins in the lower temperature region. In addition, the decreasing trend in the Weiss constant with Mn content is also the signature of the spin-glass of the materials in the lower temperature region due to the decreased magnetic exchange interactions.

Keywords

Relative dielectric constant D-factor AC permeability magnetization Weiss constant spin glass 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors are thankful to the International Science Programme (ISP), Uppsala University, Sweden, for financial and technical support, and also to the department of physics, Bangladesh University of Engineering and Technology and the department of physics, Military Institute of Science and Technology for experimental support.

References

  1. 1.
    S. Bawawaje, M. Hashi, and I. Ismail, J. Magn. Magn. Mater. 323, 1433 (2011).CrossRefGoogle Scholar
  2. 2.
    R. Ahmad, H.I. Gul, M. Zarrar, H. Anwar, M.B. Khan, and A. Khan, J. Magn. Magn. Mater. 405, 28 (2016).CrossRefGoogle Scholar
  3. 3.
    Y.D. Kolekar, L. Sanchez, E.J. Rubio, and C.V. Ramana, Solid State Commun. 184, 34 (2014).CrossRefGoogle Scholar
  4. 4.
    N. Sivakumar, A. Narayanasamy, C.N. Chinnasamy, and B. Jeyadevan, J. Phys. Condens. (2007).  https://doi.org/10.1088/0953-8984/19/38/386201.Google Scholar
  5. 5.
    N. Ponpandian, P. Balaya, and A. Narayanasami, J. Phys. Condens 14, 3221 (2002).CrossRefGoogle Scholar
  6. 6.
    J.P. Singh, H. Kumar, A. Singhal, N. Sarin, R.C. Srivastava, and K.H. Chae, Appl. Sci. Lett. (2016).  https://doi.org/10.17571/appslett.2016.02001.Google Scholar
  7. 7.
    H. Kumar, R.C. Srivastava, J.P. Singh, P. Negi, H.M. Agrawal, D. Das, and K. HwaChae, J. Magn. Magn. Mater. 401, 16 (2016).CrossRefGoogle Scholar
  8. 8.
    M.Z. Ahsan and F.A. Khan, Mater SciNanotechnol. 2, 1 (2018).Google Scholar
  9. 9.
    M.Z. Ahsan, F.A. Khan, M.A. Islam, T. Tanzina, and M.K. Alam, J. Phys. Commun. 2, 105008 (2018).CrossRefGoogle Scholar
  10. 10.
    M.Z. Ahsan, F.A. Khan, and M.A. Islam, Results Phys. 14, 102484 (2019).CrossRefGoogle Scholar
  11. 11.
    M.Z. Ahsan and F.A. Khan, J. Phys. Sci. Appl. (2017).  https://doi.org/10.17265/2159-5348/2017.06.005.Google Scholar
  12. 12.
    M.N. Akhtar and M.A. Khan, J. Magn. Magn. Mater. 421, 260 (2017).CrossRefGoogle Scholar
  13. 13.
    S.P. Yadav, S.S. Shinde, A.A. Kadam, and K.Y. Rajpure, J. Semicond. (2013).  https://doi.org/10.1088/1674-4926/34/9/093002.Google Scholar
  14. 14.
    A.A. Khadem, S.S. Shinde, S.P. Yadv, P.S. Patil, and K.Y. Rajpur, J. Magn. Magn. Mater. 329, 59 (2013).CrossRefGoogle Scholar
  15. 15.
    G.H. Jonker, J PhysChem Solids. 9, 165 (1959).CrossRefGoogle Scholar
  16. 16.
    R. Nongjai, S. Khan, K. Asokan, H. Ahmed, and I. Khan, Appl. Phys. 112, 084321 (2012).CrossRefGoogle Scholar
  17. 17.
    I.C. NlebedimY and C.Jiles Melikhov, J. Appl. Phys. 15, 043903 (2014).CrossRefGoogle Scholar
  18. 18.
    M.Z. Ahsan, F.A. Khan, and M.A. Islam, Int. J. Mat. Sci. Appl. (2018).  https://doi.org/10.11648/j.ijmsa.20180706.11.Google Scholar
  19. 19.
    A. Saini, P. Kumar, B. Ravelo, S. Lallechere, A. Thakur, and P. Thakur, Eng. Sci. Technol. 19, 911 (2016).Google Scholar
  20. 20.
    S. Tapdiya, Adv. Mat. Proc. 2, 547 (2017).CrossRefGoogle Scholar
  21. 21.
    Koferstein, J. Mater. Sci. 48, 6509 (2013).CrossRefGoogle Scholar
  22. 22.
    Rashed, J. Mater. Sci. 42, 5248 (2007).CrossRefGoogle Scholar
  23. 23.
    A. Hossain, M.S.I. Sarker, and M.K.R. Khan, Appl. Phys. A (2018).  https://doi.org/10.1007/s00339-018-2042-2.Google Scholar
  24. 24.
    S. Roy and J. Ghose, J. Appl. Phys. 87, 6226 (2000).CrossRefGoogle Scholar
  25. 25.
    Y. Melikhov, J.E. Snyder, D.C. Jiles, A.P. Ring, J.A. Paulsen, C.C.H. Lo, and K.W. Dennis, J. Appl. Phys. 99, 08R102 (2006).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of PhysicsBangladesh University of Engineering and TechnologyDhakaBangladesh
  2. 2.Department of PhysicsMilitary Institute of Science and TechnologyDhakaBangladesh

Personalised recommendations