PMMA-LZO Composite Dielectric Film with an Improved Energy Storage Density

  • M. J. Kishor Kumar
  • Jagannathan T. KalathiEmail author


Energy storage materials in modern electronic devices and renewable energy systems are inevitable. The incorporation of inorganic fillers into the polymer matrix is a promising option for the advancement of storage materials with high energy density. The agglomeration of inorganic fillers in the polymer matrix and phase separation remain the main obstacles to efficient applications of the composites for energy storage. Here, the primary attention was given to achieve a uniform distribution of high-k LZO (Lanthanum Zirconium Oxide) filler into a PMMA (Polymethylmethacrylate) matrix to enhance the dielectric constant and energy storage density of PMMA while keeping dielectric loss at minimum. We prepared PMMA-LZO composite films with variable LZO content by ultrasound-assisted mixing followed by spin coating the solution on ITO (Indium tin oxide) coated glass. The effect of LZO content on dielectric properties of the LZO-PMMA films was studied. Dielectric constant (k) of PMMA was found to be increased from 3.1 to 15.3 at 15 vol.% LZO loading with a dielectric loss of 0.0582. However, 10 vol.% LZO loaded PMMA showed an improved dielectric constant of 13.4 while the dielectric loss remained the same as that of the neat PMMA. The LZO-PMMA films with 10 vol.% and 15 vol.% of LZO loading exhibited maximum energy density of 5.94 J cm−3 and 6.53 J cm−3, respectively. Overall, the 10 vol.% LZO loading was found to be optimum to achieve a stable film with improved dielectric properties. This work provides a viable approach for the development of flexible, high-energy density materials with a minimum dielectric loss.


PMMA-LZO film energy storage materials polymer composites dielectric film impedance analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank the Centre of Ferroelectric Materials, Hong Kong University, for providing access to a ferroelectric workstation facility.


  1. 1.
    E. Ruiz-Hitzky, P. Aranda, M. Darder, and M. Ogawa, Chem. Soc. Rev. 40, 801–828 (2011).CrossRefGoogle Scholar
  2. 2.
    B. Arkles, MRS Bull. 26, 402–408 (2001).CrossRefGoogle Scholar
  3. 3.
    M. Oliveira, R. Nogueira, and A. Machado, React. Funct. Polym. 72, 703–712 (2012).CrossRefGoogle Scholar
  4. 4.
    D.H. Kuo, C.C. Chang, T.Y. Su, W.K. Wang, and B.Y. Lin, J. Eur. Ceram. Soc. 21, 1171 (2001).CrossRefGoogle Scholar
  5. 5.
    S.H. Xie, B.K. Zhu, and Z.K. Xu, Mater. Lett. 59, 2403 (2005).CrossRefGoogle Scholar
  6. 6.
    P. Thomas, K.T. Varughese, K. Dwarakanath, and K.B.R. Varma, Compos. Sci. Technol. 70, 539–545 (2010).CrossRefGoogle Scholar
  7. 7.
    Y. Xia, J. Chen, Z. Zhu, Q. Zhang, H. Yang, and Q. Wang, RSC Adv. 8, 4032–4038 (2018).CrossRefGoogle Scholar
  8. 8.
    Z. Feng, Y. Hao, M. Bi, Q. Dai, and K. Bi, IET Nanodielectrics. 1, 60–66 (2018).CrossRefGoogle Scholar
  9. 9.
    N. Guo, S.A. DiBenedetto, P. Tewari, M.T. Lanagan, M.A. Ratner, and T.J. Marks, Chem. Mater. 22, 1567 (2010).CrossRefGoogle Scholar
  10. 10.
    N. Guo, S. DiBenedetto, D. Kwon, L. Wang, M. Russell, M. Lanagan, A. Facchetti, and T. Marks, J. Am. Chem. Soc. 129, 766 (2007).CrossRefGoogle Scholar
  11. 11.
    L.A. Fredin, Z. Li, M.A. Ratner, M.T. Lanagan, and T.J. Marks, Adv. Mater. 24, 5946 (2012).CrossRefGoogle Scholar
  12. 12.
    L.A. Fredin, Z. Li, M.T. Lanagan, M.A. Ratner, and T.J. Marks, Adv. Funct. Mater. 23, 3560 (2013).CrossRefGoogle Scholar
  13. 13.
    L.A. Fredin, Z. Li, M.T. Lanagan, M.A. Ratner, and T.J. Marks, ACS Nano. 7, 396 (2013).CrossRefGoogle Scholar
  14. 14.
    L.Y. Xie, X.Y. Huang, C. Wu, and P.K. Jiang, J. Mater. Chem. 21, 5897 (2011).CrossRefGoogle Scholar
  15. 15.
    K. Yang, X.Y. Huang, L.Y. Xie, C. Wu, P.K. Jiang, and T. Tanaka, Macromol. Rapid Commun. 33, 1921 (2012).CrossRefGoogle Scholar
  16. 16.
    L.Y. Xie, X.Y. Huang, Y.H. Huang, K. Yang, and P.K. Jiang, J. Phys. Chem. C 117, 22525 (2013).CrossRefGoogle Scholar
  17. 17.
    K.N. Woods, T.-H. Chiang, P.N. Plassmeyer, M.G. Kast, A.C. Lygo, A.K. Grealish, S.W. Boettcher, and C.J. Page, ACS Appl. Mater. Interfaces. 9, 10897 (2017).CrossRefGoogle Scholar
  18. 18.
    X. Huang and P. Jiang, Adv. Mater. 27, 546 (2015).CrossRefGoogle Scholar
  19. 19.
    M.K. Kumar and J.T. Kalathi, J. Alloys Compd. 748, 348 (2018).CrossRefGoogle Scholar
  20. 20.
    H. Luo, D. Zhang, C. Jiang, X. Yuan, C. Chen, and K. Zhou, ACS Appl. Mater. Interfaces. 7, 8061–8069 (2015).CrossRefGoogle Scholar
  21. 21.
    L. Kong, I. Karatchevtseva, D.J. Gregg, M.G. Blackford, R. Holmes, and G. Triani, J. Am. Ceram. Soc. 96, 935 (2013).CrossRefGoogle Scholar
  22. 22.
    V. Cloet, J. Feys, R. Hühne, S. Hoste, and I. Van Driessche, J. Solid State Chem. 182, 37 (2009).CrossRefGoogle Scholar
  23. 23.
    F. Wen, Z. Xu, W. Xia, H. Ye, X. Wei, and Z. Zhang, J. Electron. Mater. 42, 3489 (2013).CrossRefGoogle Scholar
  24. 24.
    S. Moharana, M.K. Chopkar, and R.N. Mahaling, J. Electron. Mater. 48, 1714 (2019).CrossRefGoogle Scholar
  25. 25.
    M. Samet, V. Levchenko, G. Boiteux, G. Seytre, A. Kallel, and A. Serghei, J. Chem. Phys. 142, 194703 (2015).CrossRefGoogle Scholar
  26. 26.
    N. Jayasundere and B.V. Smith, J. Appl. Phys. 73, 2462 (1993).CrossRefGoogle Scholar
  27. 27.
    S.P. Samant, C.A. Grabowski, K. Kisslinger, K.G. Yager, G. Yuan, S.K. Satija, M.F. Durstock, D. Raghavan, and A. Karim, ACS Appl. Mater. Interfaces. 8, 7966 (2016).CrossRefGoogle Scholar
  28. 28.
    Z.M. Dang, J.K. Yuan, J.W. Zha, T. Zhou, S.T. Li, and G.H. Hu, Prog. Mater Sci. 57, 660 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringNational Institute of Technology KarnatakaSurathkalIndia

Personalised recommendations