Advertisement

Experimental and Quantum Chemical Investigation on Piperazinium Hexachloro Stannous Trihydrate Single Crystal for Second Harmonic Generation Applications

  • Radhakrishnan Anbarasan
  • Palaniyasan Eniya
  • Jeyaperumal Kalyana SundarEmail author
Article
  • 6 Downloads

Abstract

A metal–organic single crystal of piperazinium hexachloro stannous trihydrate properties are explored through a combined form of experimental and density functional theory. The single crystal of piperazinium hexachloro stannous trihydrate was grown by a solvent evaporation method. All the theoretical calculations have been carried out using a hybrid basis set, B3LYP/6-31G(d,p)/LANL2DZ, with effective core potential. The structural and lattice parameters are confirmed from x-ray diffraction analysis. The functional group vibrational assignments have been theoretically calculated and are well correlated with experimental spectra. Optical studies revealed that the material has 60% transmission in the entire visible region, and a lower cut-off wavelength of about 271 nm where the possible electronic transition is nσ*. The initial thermal decomposition is started at 60°C, and further decomposition stages have been investigated by thermal analysis. The intermolecular charge transfer, the HOMO–LUMO energy gap and chemical reactivity descriptors are calculated from the frontier molecular orbital analysis. The H···Cl/Cl···H (60%) intermolecular hydrogen bond interactions have the predominant role in determining molecular properties and crystal packing arrangements. The distinct atom-to-atom intermolecular interactions are interpreted through fingerprint plots. The second harmonic efficiency of a titled crystal is 1.8 times greater than that of typical KDP material. The dipole moment, polarizability and first-order hyperpolarizability are 23.89 D, − 2.29 × 10−23 esu and 3.26 × 10−30 esu, respectively, have been calculated from density functional theory. The obtained results show that a piperazinium hexachloro stannous trihydrate crystal could be accepted as a good candidate for nonlinear optical applications.

Keywords

Metal–organic crystal vibrational analysis Hirshfeld surface thermal studies hyperpolarizability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    D.J. Williams, Nonlinear Optical Effects in Molecules and Polymers (New York: Wiley, 1987).Google Scholar
  2. 2.
    D.S. Chemla and J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals, Vol. 1 (London: Academic Press, 1987).Google Scholar
  3. 3.
    O.R. Evans and W. Lin, Acc. Chem. Res. 35, 511 (2002).CrossRefGoogle Scholar
  4. 4.
    N.J. Long, Angew. Chem. Int. Ed. Engl. 34, 21 (1995).CrossRefGoogle Scholar
  5. 5.
    M. Jiang and Q. Fang, Adv. Mater. 11, 1147 (1999).CrossRefGoogle Scholar
  6. 6.
    S.K. Abdel-Aal and A.S. Abdel-Rahman, J. Cryst. Growth 457, 282 (2017).CrossRefGoogle Scholar
  7. 7.
    C.-H. Chen, R. Mu, L. Zhang, and G.-C. Xu, CrystEngComm 18, 2719 (2016).CrossRefGoogle Scholar
  8. 8.
    M.F. Mostafa and A. Hassen, Phase Transit. 79, 305 (2006).CrossRefGoogle Scholar
  9. 9.
    M.A. Al-Alshaikh, O.A. Al-Deeb, N.Z. Alzoman, A.A. El-Emam, R. Srivastava, A.K. Sachan, O. Prasad, and L. Sinha, J. Mol. Struct. 1100, 225 (2015).CrossRefGoogle Scholar
  10. 10.
    M.A. James, O. Knop, and T.S. Cameron, Berichte Bunsenges. Phys. Chem. 95, 1280 (1991).CrossRefGoogle Scholar
  11. 11.
    V. Subhashini, S. Ponnusamy, and C. Muthamizhchelvan, J. Cryst. Growth 363, 211 (2013).CrossRefGoogle Scholar
  12. 12.
    B. Dhanalakshmi, S. Ponnusamy, C. Muthamizhchelvan, and V. Subhashini, J. Cryst. Growth 426, 103 (2015).CrossRefGoogle Scholar
  13. 13.
    P. Rekha, G. Peramaiyan, R. Mohan Kumar, and R. Kanagadurai, Mater. Lett. 129, 202 (2014).CrossRefGoogle Scholar
  14. 14.
    V. Subhashini, S. Ponnusamy, C. Muthamizhchelvan, and B. Dhanalakshmi, Opt. Mater. (Amst). 35, 1327 (2013).CrossRefGoogle Scholar
  15. 15.
    R. Rajkumar and P.P. Kumar, J. Opt. 47, 75 (2018).CrossRefGoogle Scholar
  16. 16.
    R.E. Vizhi and M. Vijayalakshmi, J. Cryst. Growth 452, 204 (2016).CrossRefGoogle Scholar
  17. 17.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian 09, Rev A.02, Vol. 1 (Wallingford CT: Gaussian, Inc., 1987).Google Scholar
  18. 18.
    A. Frisch, A.B. Nielson, and A.J. Holder, Gaussview User Manual (Pittsburgh. PA: Gaussian Inc., 2000).Google Scholar
  19. 19.
    J.D. Patterson, Density-Functional Theory of Atoms and Molecules (New York: Oxford University Press, 1989).CrossRefGoogle Scholar
  20. 20.
    C. Lee, C. Hill, and N. Carolina, Chem. Phys. Lett. 162, 165 (1989).CrossRefGoogle Scholar
  21. 21.
    A. Oueslati, S. Hajlaoui, K. Guidara, A. Bulou, and I. Chaabane, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 117, 225 (2013).Google Scholar
  22. 22.
    K.L. Schuchardt, B.T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, and T.L. Windus, J. Chem. Inf. Model. 47, 1045 (2007).CrossRefGoogle Scholar
  23. 23.
    Y. Yang, M.N. Weaver, and K.M. Merz, J. Phys. Chem. A 113, 9843 (2009).CrossRefGoogle Scholar
  24. 24.
    M. Alcolea Palafox, Int. J. Quantum Chem. 77, 661 (2000).CrossRefGoogle Scholar
  25. 25.
    C.F. Macrae, P.R. Edgington, P. McCabe, E. Pidcock, G.P. Shields, R. Taylor, M. Towler, and J. van de Streek, J. Appl. Crystallogr. 39, 453 (2006).CrossRefGoogle Scholar
  26. 26.
    C. Dong, J. Appl. Crystallogr. 32, 838 (1999).CrossRefGoogle Scholar
  27. 27.
    M. Daszkiewicz, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 131, 335 (2014).CrossRefGoogle Scholar
  28. 28.
    R. Anbarasan, M. Anna Lakshmi, and J. Kalyana Sundar, J. Mater. Sci. Mater. Electron. 29, 14827 (2018).CrossRefGoogle Scholar
  29. 29.
    R. Anbarasan, J. Kalyana Sundar, and M. Anna Lakshmi, J. Mol. Struct. 1179, 154 (2018).CrossRefGoogle Scholar
  30. 30.
    A. Kessentini, T. Dammak, and M. Belhouchet, J. Mol. Struct. 1149, 818 (2017).CrossRefGoogle Scholar
  31. 31.
    M.J. Turner, J.J. McKinnon, S.K. Wolff, D.J. Grimwood, and P.R. Spackman, CrystalExplorer17 (Nedlands: University of Western Australia, 2017).Google Scholar
  32. 32.
    J.J. McKinnon and M.A. Spackman, CrystEngComm 4, 378 (2002).CrossRefGoogle Scholar
  33. 33.
    M.A. Spackman and D. Jayatilaka, CrystEngComm 11, 19 (2009).CrossRefGoogle Scholar
  34. 34.
    S.K. Kurtz and T.T. Perry, J. Appl. Phys. 39, 3798 (1968).CrossRefGoogle Scholar
  35. 35.
    H.A. Kurtz, J.J.P. Stewart, and K.M. Dieter, J. Comput. Chem. 11, 82 (1990).CrossRefGoogle Scholar
  36. 36.
    A. Tounsi, S. Elleuch, B. Hamdi, R. Zouari, and A. Ben Salah, J. Mol. Struct. 1141, 512 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Radhakrishnan Anbarasan
    • 1
  • Palaniyasan Eniya
    • 1
  • Jeyaperumal Kalyana Sundar
    • 1
    Email author
  1. 1.Materials Science Laboratory, Department of PhysicsPeriyar UniversitySalemIndia

Personalised recommendations